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ABSTRACT

Frequency and time-domain analytical expressions are de-
rived for the electromagnetic field response of a resistive layer
inserted in an otherwise homogeneous whole-space as observed
in the vicinity of an electric dipole source. The analysis of
closed-form solutions demonstrated that at near-source-receiver
offsets, the spectral and spatial distribution of the fields is better
described by a superposition of images, associated with the di-
polar character of the charges distributed in the boundaries,
rather than the guided mode behavior dominating the response
in the far offset regime. Approximate solutions of the fields in
the frequency domain were derived using the saddle point meth-
od of integration. The formulas describing the fields were in
good agreement with semianalytical calculations. However, a
lower frequency bound was found, below which the expressions

are inaccurate, and thereby they cannot be used to obtain time-
domain solutions. A kernel modulation scheme was used in-
stead, which yields an infinite series representation for the
fields. The expressions thus derived produce accurate fields
to very low frequencies, and thereby they were also used to
obtain time-domain formulas. The analysis indicated that for
a vertical electric dipole (VED) excitation, the late time response
of the image field associated with the charge density induced on
the upper boundary appears to cancel the direct field, thus pro-
viding the response of the layer. For a horizontal electric dipole
(HED) source, the superimposed contributions of the transverse
electric (TE) and transverse magnetic (TM) modes appeared to
oppose the image field, resulting in the direct field dominating
over the response of the layer, and thereby masking any sensi-
tivity to the properties of the layer in this configuration.

INTRODUCTION

In marine controlled-source electromagnetic (CSEM) hydrocar-
bon exploration, an electromagnetic (EM) source is used to excite
the subsurface by radiating low-frequency energy and simulta-
neously recording the resulting EM fields as a function of time
and/or space.What has becomeknownas the standardCSEMmethod
or sea bed logging (SBL) consists of a towed (e.g., more than 200 m
long) antenna emitting harmonic (e.g., frequency 0.25 Hz) energy,
and an array of stationary receivers, spaced at 1–3 km over a 10–
30-km line, recording two to five components of the electromagnetic
fields in the sea bottom (Eidesmo et al., 2002). In practice, an SBL
data set consists of the electromagnetic fields measured in the sea-
floor, at discrete frequencies (Mittet and Schaug-Pettersen, 2008),
as the source traverses the survey area. This results in a geometrical
sounding of the fields that yields a stronger target response and great-
er depth of investigation with increasing source-receiver offset.

Recently, a vertical source-receiver time-domain measurement
has emerged as an alternative method (Barsukov et al., 2007). In this
case, a long period (more than 200 s, 50% duty cycle) waveform is
continuously transmitted by a stationary vertical antenna (length
dependent on water depth) while the vertical component of the elec-
tric field is recorded at a fixed, nearby seafloor receiver. The data set
is obtained by postprocessing of the time series to recover a stacked
waveform, and hence, extract the field’s transient decay. The re-
sponse from deep reservoirs appears at increasingly late times, even
at very close source-receiver offsets (see Figure 1b, 1a for a numer-
ical example), and therefore, the method can be used (given a favor-
able signal to noise ratios) to discriminate deep resistive targets.
In the SBL method, the spatial dependence of the field at offsets

of 2–10 km is the dominant reservoir detection mechanism, thus
the source can be towed leading to certain acquisition efficiency.
With the transient measurement, the fields need to be recorded
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and stacked out to 30 to 100 s after the shutoff of the current, at
relatively close offsets. This requires a stationary source position
and extended measurement intervals to achieve required signal to
noise, which in turn, leads to acquisition inefficiency. Naturally,
the question arises regarding the performance of each technique
and thereby the fundamental understanding of the behavior of
the fields arising in each measurement configuration is receiving
a great deal of attention. With the dominance of the SBL method
in the market, to date, the main focus has been biased toward
analyzing the target’s response at far source-receiver offsets of
interest in the standard CSEM method. Furthermore, the problem
is traditionally approached either by numerically simulating the
response of realistic targets, or by semianalytically computing
the fields observed in idealized 1D settings (Chave, 2009) as
closed-form solutions are only possible to obtain for simplified

geometries. However, the closed-form solutions allow us to analyze
the fundamental physics of the problem in a more compact way,
leading to new insights of what a given technique has to offer.
For instance, the seminal work of Baños (1966) (see also Bannister
(1984)) describing the dipolar field in a two half-spaces system is
used to study the properties of the so-called airwave component that
masks the reservoir’s response at large offsets in the standard CSEM
configuration. The airwave phenomenon arises in the TE mode of
the fields due to a HED excitation, thereby the VED time-domain
measurement is ideally set up to avoid this effect. Concerning the
three-media system, the work of Weidelt (2007) (as well as Loseth
(2007)) described the theory introducing the concept of a guided
mode of the EM fields appearing at long source-receiver offsets.
Inside a resistive layer, the energy flow is channeled preferentially
in the radial direction as it leaks out to the more conductive sur-

rounding. The formulas derived in Loseth
(2007) show that at far offsets, the spatial falloff
of the fields escaping the resistive channel fol-
lows an approximate r1∕2e−iλ0r dependence on
the radial distance r, which dominates above
the faster decaying primary field. The so-called
resistive layer pole λ0 depends on the resistivity-
thickness product of the layer (Cuevas et al.,
2009: Kong et al., 2010). From this observation,
Kong et al. (2010) propose that estimates of the
wavenumber in experimental data could be re-
lated to hydrocarbon indicators.
In the near-offset regime of the vertical source-

receiver configuration the expressions derived in
Loseth (2007) do not accurately describe the spa-
tial falloff of the fields (see Loseth [2007] sec-
tion §4.5.6). In fact, the contribution of the
resistive layer pole diverges as approximately
lnðλ0rÞ as r → 0, and therefore, the role of the
guided mode is not clear, or not present, at recei-
ver locations close to the source. Loseth (2007)
also includes terms of the form jωμ0σ1rj−1 (e.g.,
equation 4.49 in Loseth (2007)) that improve the
accuracy of the solution in the asymptotic regime
of jωμ0σ1rj ≫ 1. However, the inverse depen-
dence on ω imposes a threshold frequency below
that which the solution is not accurate, and there-
fore, it cannot be used to analyze the time-
domain transient of the fields in which very
low frequencies are required.
It is the purpose of this work to study the

near-offset, spatial, and spectral distribution of
the EM fields due to a VED or HED source lo-
cated above a resistive layer inserted in an other-
wise homogeneous whole-space (see Figure 2).
The analysis is approached using closed-form
solutions to provide basic understanding of the
fields arising at near offsets in comparison to
the long offset measurements. In particular, the
analytical studies can explain the lack of sensi-
tivity observed in near-offset measurements with
an HED source and inline receiver, in compari-
son to the vertical source-receiver configuration.
Moreover, closed-form solutions could reveal

Figure 1. (a) Time-domain anomaly in the EZ component due to the presence of a re-
sistive layer, located at various depths (h ¼ 1, 2, 3, and 4 km) below the seafloor. (b) The
model configuration consists of the resistive layer (100 Ω-m) that is inserted in 1 Ω-m
sediments. The source and receiver are placed 50 m above the seafloor and their separa-
tion is fixed at 200 m.
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hydrocarbon indicative properties of the fields, in analogy to those
of the guided mode wave number, which have been exploited in
Kong et al. (2010).
In the next section, a solution for the fields observed above the

layer is established as a superposition of a direct and an image term,
and a Fourier-Bessel integral in the complex wavenumber domain
describing a secondary layer response. Asymptotic power series
expansions of the fields are analyzed (Asymptotic solution
1—High-frequency behavior section) in the high frequency regime
of jωμ0σ1hj ≫ 1. A low frequency solution is obtained via a Kernel
Modulation technique (Asymptotic solution 2 — Low frequency
and late time-domain transient decay section), which in turn, yields
suitable expressions for the analysis of the time-domain transient
decay. Concluding remarks are presented last.

SOURCE, IMAGE, AND SECONDARY
LAYER RESPONSE

Consider the simplified model described in Figure 2. A harmonic,
unit electric dipole source (J ¼ ûIdsδðxÞδðyÞδðzþ hÞeiωt , û ¼ ẑ; x̂
for a VED and HED, respectively) is located at a distance h above
the resistive layer of conductivity σ2 and thickness h2, in a whole-
space of conductivity σ1. The origin of the coordinate system
coincides with the top boundary of the layer, thus, the source is
located at z ¼ −h, and the observation point is defined coplanar
with the source (i.e., y ¼ 0) and located above the layer at z < 0

(then h − z > 0), and at a radial distance r (¼ x) from the source.
Here, the work of Ward and Hohmann (1988) is extended to for-

mulate the boundary value problem, subject to suitable boundary
conditions, for the fields arising in the specific 1D problem of
the scenario described above. After a few algebraic steps, it is easy
to show that the solution yields a superposition of a direct field (D)
and two components that account for the layer response; an image
term (I) and the secondary fields (S). The image term represents the
contribution due to the charge density induced by the direct field on
the upper plane of the layer, and the secondary fields represent the
effect of the finite thickness of the layer. Formally,

Ez ¼ EðDÞ
z − EðIÞ

z þ Ids
4πσ1

Z∞

0

2K1

K1 þ Ẑ2

λ3

u1
J0ðλrÞe−u1ðh−zÞdλ;

Ex ¼ EðDÞ
x − EðIÞ

x −
Ids
4πσ1

Z∞

0

2K1

K1 þ Ẑ2

λ2J1ðλrÞe−u1ðh−zÞdλ;

Hy ¼ HðDÞ
y − HðIÞ

y þ Ids
4π

Z∞

0

2K1

K1 þ Ẑ2

λ2

u1
J1ðλrÞe−u1ðh−zÞdλ;

Ki ¼
ui

σi þ iϵiω
;

Ẑ2 ¼ K2

K3 þ K2 tanhðu2h2Þ
K2 þ K3 tanhðu2h2Þ

;

ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − k2i

q
; and

k2i ¼ −iσiωμ0 (1)

for a VED source; whereas for a HED source, the fields are given by

Ex ¼ EðDÞ
x − EðIÞ

x þ EðTMÞ
x þ EðTEÞ

x ;

Ez ¼ EðDÞ
z − EðIÞ

z þ EðTMÞ
z þ EðTMÞ

z ;

Hy ¼ HðDÞ
y − HðIÞ

y þ HðTMÞ
y þ HðTMÞ

y ; (2)

where the secondary field has been decomposed into its TM and TE
components, which are given as

EðTMÞ
x ¼ Ids

4πσ1

Z∞

0

22Ẑ

Z1 þ Ẑ2

u1e−u1ðh−zÞ
�
J1ðλrÞ

r
− λJ0ðλrÞ

�
dλ;

EðTMÞ
z ¼ Ids

4πσ1

Z∞

0

2Ẑ2

Z1 þ Ẑ2

e−u1ðh−zÞλ2J0ðλrÞdλ;

HðTMÞ
y ¼ Ids

4π

Z∞

0

2Ẑ2

Z1 þ Ẑ2

e−u1ðh−zÞ
�
J1ðλrÞ

r
− λJ0ðλrÞ

�
dλ;

Zi ¼
ui

σi þ iϵiω
; and

Ẑ2 ¼ Z2

Z3 þ Z2 tanhðu2h2Þ
Z2 þ Z3 tanhðu2h2Þ

(3)

for the TM mode, and by

EðTEÞ
x ¼ Ids

4πσ1

k21
r

Z∞

0

2Y1

Y1 þ Ŷ2

e−u1ðh−zÞ

u1
J1ðλrÞdλ;

EðTEÞ
z ¼ 0;

HðTEÞ
y ¼ Ids

4π

1

r

Z∞

0

2Y1

Y1 þ Ŷ2

e−u1ðh−zÞJ1ðλrÞdλ;

Yi ¼
ui

iμ0ω
; and

Ŷ2 ¼ Y2

Y3 þ Y2 tanhðu2h2Þ
Y2 þ Y3 tanhðu2h2Þ

(4)

Figure 2. Three media configuration of the system of interest in this
work. The resistive layer, of conductivity σ2, and thickness h2 is
inserted in a homogeneous whole-space of conductivity σ1 > σ2.
The origin of the coordinate system coincides with the top of the
layer. Thus, z > 0 in the downward direction, the source is located
at zs ¼ −h, and the observation point is defined for z < 0.
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for the TE mode. By symmetry considerations, Hz vanishes identi-
cally at y ¼ 0, i.e., for coplanar source-receiver positions. The
integral representation of the secondary fields describes a superpo-
sition of plane waves of complex angle of incidence. The complex
amplitude of the plane wave components is determined by matching
boundary conditions for the fields observed at the upper and lower
interfaces. The integration then accounts for that fraction of the
energy that is transmitted through the layer and subsequently
reflected at the lower interface.
The direct and image terms (EðD;IÞ and HðD;IÞ) describe the fields

arising from a dipole located above and below the plane of the upper
interface, respectively, in a homogeneous whole-space of conduc-
tivity σ1. Expressions for these components are readily available
from equation 2.40 and equation 2.42 in Ward and Hohmann
(1988) (for a HED excitation) or can be derived from such formulas
by a suitable coordinate transformation (for a VED excitation). For
completeness,

EðD;IÞ
z ¼ Ids

4πσ1

e−ik1R

R3

�
r2k21 − ik1R − 1þ 3ik1Δ2

R
þ 3Δ2

R2

�
;

EðD;IÞ
x ¼ Ids

4πσ1

rΔe−ik1R

R3

�
−k21 þ

3ik1
R

þ 3

R2

�
;

HðD;IÞ
y ¼ −

Ids
4π

re−ik1R

R2

�
ik1 þ

1

R

�
(5)

for the VED excitation, and

EðD;IÞ
z ¼ Ids

4πσR3
e−k1R

�
Δx
R2

ð−k21R2 þ 3ik1Rþ 3Þ
�
;

EðD;IÞ
x ¼ Ids

4πσR3
e−k1R

�
x2

R2
ð−k21R2 þ 3ik1Rþ 3Þ

þ ðk21R2 − ik1R − 1Þ
�
;

HðD;IÞ
y ¼ −

Ids
4πR2

e−k1R
�
Δ
R
ðik1Rþ 1Þ

�
(6)

for the HED excitation. The superscript ðD; IÞ regards the direct or
image component, such that R ¼ ðx2 þ Δ2Þ1∕2, with Δ ¼ zþ h,
z − h for the direct (D) and image (I) components, respectively.
The secondary fields are derived after evaluating the Fourier-

Bessel integrals in equations 1, 3, and 4. This is traditionally accom-
plished using a semianalytical approach, such as fast Hankel
transform algorithms (e.g., Anderson (1979)). In what follows,
the task is accomplished analytically for the system in which the
resistive layer is embedded in homogeneous whole-space, such
that K3 ¼ K1, Z3 ¼ Z1, and Y3 ¼ Y1 on the integration kernels
above.

ASYMPTOTIC SOLUTION 1 — HIGH
FREQUENCY BEHAVIOR

Consider the behavior of the fields observed at close source-
receiver offsets (jk1rj ≪ 1), at high enough frequencies such that
the skin depth in the overburden is much smaller than the vertical

distance between the source and the layer (jk1ðh − zÞj ≫ 1). In this
regime, the solutions for the secondary field integrals 1, 3, and 4
are well approximated by asymptotic series on jk1ðh − zÞj−1. The
detailed derivation of the asymptotic series expansions of the fields
is described in Appendix A, and the results are validated by com-
parison (e.g., Figure A-1 and Figure A-2) to semianalytical calcula-
tions of the fields (K. H. Lee, personal communication, 1988). The
following approximated closed-form expressions are employed to
interpret the structure of the fields in the near-offset regime of inter-
est in this work.
For a VED excitation, the vertical component of the secondary

field, EðSÞ
z , can be approximated by equation A-24,

EðSÞ
z ∼

I1ds
4πσ1

e−ik1ðh−zÞ

ðh − zÞ3 2½1þ ik1ðh − zÞ − 2n2ik1h2�

−
I2ds
4πσ1

e−ik1ðh−zÞ

ðh − zÞ3 2½1þ ik1ðh − zÞ − 4n2ik1h2�

I1 ¼ I;

I2 ¼ I
ik1h2
2

;

n2 ¼ σ1∕σ2. (7)

On the other hand, using equation 5, the field due to a biased image
source, i.e., a source located η m above the image at zs ¼ h − η, is
approximated by

EðηÞ
z ∼

Ids
4πσ1

e−ik1ðh−zÞ

ðh − zÞ3 2½1þ ik1ðh − zÞ − 2ik1η�; (8)

assuming that ðh − zÞ ≫ η and r → 0. Therefore, equation 7
describes the field arising due to a pair of such biased image
sources, a source located at η1 ¼ n2h2 and another one at
η2 ¼ 2n2h2. These image sources represent the cumulative effect
of the charges induced at a given boundary by the field generated
by the induced charge at the other boundary, and ultimately, the
charge induced at the upper interface by the direct component.
Furthermore, rearranging equation 7 to dominant order Oðk1h2Þ
and considering the near-offset approximation of the direct and
image components (assuming Δ ≪ r and Δ ≫ r for the direct and
image terms, respectively, in equation 5) yields the total field

Ez ¼ EðDÞ
z − EðIÞ

z þ EðSÞ
z ;

EðDÞ
z ∼

Ids
4πσ1

e−ik1r

r3
ðr2k21 − ik1r − 1Þ;

EðIÞ
z ∼

Ids
4πσ1

e−ik1ðh−zÞ

ðh − zÞ3 2½1þ ik1ðh − zÞ�;

EðSÞ
z ∼

Ids
4πσ1

e−ik1ðh−zÞ

ðh − zÞ3 2½1þ ik1ðh − zÞ − 2n2ik1h2� − : : : (9)

The secondary field,
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EðSÞ
z ∼ EðIÞ

z −
Ids
4πσ1

e−ik1ðh−zÞ

ðh − zÞ3 ð4n
2ik1h2Þ − : : : ; (10)

in part cancels the image term (EðIÞ
z ), suggesting that those sources

induced on the upper boundary will induce a charge distribution in
the lower boundary that is opposite in sign and therefore produces
an opposing field. The remaining response of the layer is given by
4n2ik1h2 in equation 10, i.e., the secondary field depends on h2∕σ2
or the resistive thickness product of the layer, a property that applies
to the quasistatic behavior of the fields in the DC resistivity method
(Kaufman (2010), Sharma (1997)).
Consider now the asymptotic solution for Ex, due to a HED. The

field can be described as

Ex ¼ EðDÞ
x − EðIÞ

x þ
�
EðTMÞ
x þ EðTEÞ

x

�
; (11)

a superposition of a direct D and image I term, and the additional
secondary layer response, contained in the TE and TMmodes of the
secondary fields (equation A-30 and equation A-42), which can be
approximated as

EðTMÞ
x ¼ Ids

4πσ1

k21
ðh − zÞ e

−ik1ðh−zÞ
�
1þ 1

ik1ðh − zÞ

þ 1

½ik1ðh − zÞ�2
�
−

Ids
4πσ1

k21
2ðh − zÞ e

−ik1ðh−zÞ

�
1 − n2

h2
ðh − zÞ þ

3in2

k1

h2
ðh − zÞ2

�
(12)

and

EðTEÞ
x ¼ Ids

4πσ1

k21
2ðh − zÞ e

−ik1ðh−zÞ
�
1 −

h2
ðh − zÞ

�
1

2
−
σ2
σ1

��

(13)

for the TM and TE modes, respectively. Similarly, the image
component of the total field due to a HED (EðIÞ

x for r ≪ jh − zj)
is given by

EðIÞ
x ¼ Ids

4πσ1

k21
ðh − zÞ e

−ik1ðh−zÞ
�
1þ 1

ik1ðh − zÞ

þ 1

ðik1ðh − zÞÞ2
�
. (14)

It is evident that the first term in equation 12 exactly opposes the
image term in equation 14. The opposing image is obtained solely
from the TMmode of the fields, as the TE field is continuous across
the interface, and thereby, it does not induce a charge density at the
layer boundaries. From a practical standpoint, it is noted that the
layer response of the TE mode is contained in the expression
ðh2∕ðh − zÞÞðσ2∕σ1Þ of equation 13, which is negligible in compar-
ison to unity (for σ2∶σ1 ¼ 1∶10, and h2∶ðh − zÞ ¼ 50∶2000,
ðh2σ2Þ∕ðσ1ðh − zÞÞ ∼ Oð10−3Þ). This analytically shows the

empirically known fact that the fields described by the TE mode
are rather insensitive to the properties of the layer.
The secondary layer response is left in the TM mode

(equation 12) in as much as n2h2∕ðh − zÞ compares with unity (for
σ2∶σ1 ¼ 1∶10, and h2∶ðh − zÞ ¼ 50∶2000, n2ðh2∕ðh − zÞÞ ∼ 0.25).
Indeed, replacing n2 ¼ σ1∕σ2 in equation 12 shows that the remain-
ing response of the layer is proportional to the resistivity-thickness
product, and inversely with the source-receiver distance to the tar-
get. Swidinsky and Edwards (2009) demonstrate the lack of sensi-
tivity of the TE mode in the response of 2D resistive targets, but the
dependence on transverse impedance of the TM mode was assumed
in the underlaying resistive thin sheet approximation of their solu-
tion. That is, they formulated the solution under the assumption that
the layer’s thickness is much smaller than its depth, and in that the
response of the target depends on the resistivity-thickness product,
rather than the individual properties.

ASYMPTOTIC SOLUTION 2 — LOW FREQUENCY
AND LATE TIME-DOMAIN TRANSIENT DECAY

In practice, the behavior of the fields as a function of time
depends on the nature of the source, in as much as the source time
function differs from a pure harmonic excitation. Given the spectral
content of the source JsðωÞ, the time dependence of the resulting
fields is obtained as a superposition of the spectral content of the
fields (e.g., EðωÞ) weighted by the spectrum of the source, i.e., by
the inverse Fourier transform

eðtÞ ¼ 1

2π

Z þ∞

−∞
EðωÞJsðωÞeiωtdω. (15)

For a step on (step off) time dependence of the source, it is well
known that the spectral content is inversely proportional to fre-
quency, i.e., JsðωÞ ¼ 1∕ðiωÞ, thereby the behavior of the fields
at late times is strongly dependent on the spectrum of the fields
at low frequencies. In this regard, the inverse dependence
ðik1ðh − zÞÞ−n in equations A-15, A-17, and A-20 indicates that
the formulas are accurate for short wavelengths in the conducting
medium such that jk1ðh − zÞj ≫ 1. For a given source-layer dis-
tance (h − z), a low-frequency threshold appears, below which
the asymptotic solutions cannot accurately describe the behavior
of the fields, and thereby cannot be inverted to derive the time-
domain representation of the fields. To overcome this limitation,
a Kernel modulation scheme is used to evaluate the integral of
the secondary fields. In this method, the integration kernels in equa-
tions 1, 3, and 4 are modulated by a suitable function that allows to
extend the path of integration to −∞. In turn, the path is deformed to
enclose the singularities due to the resistive layer pole and those
resulting at the poles of the modulating function. The method of
residues (Morse and Feshbach, 1953) is used to evaluate the inte-
grals by superimposing the residues determined at the positions of
the poles. The solution yields an infinite series representation that
accurately describes the spectrum of the fields to very low frequen-
cies. The detail derivations are presented in Appendix B. In the fol-
lowing, only the main results are revisited to interpret the structure
of the fields and discuss the time-domain transient behavior.
Consider the vertical electric field component due to a VED

excitation. The secondary field in the frequency domain is given by
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EðSÞ
z ¼ Ids

4πσ1
ð−i2πÞ

X∞
n¼0

�
K1

K1 þ Ẑ2

�
λ¼λn

λ3nk2
u1n

J0ðλnrÞe−u1nðh−zÞ

λn ¼ −ik2ð2nþ 1Þπ∕2; for n ¼ 0; 1; 2; : : : (16)

In Figure 3, semianalytical calculation (symbols) are compared to
the Kernel modulation results (solid lines) of equation 16, and the
agreement is evident. However, simplifying assumptions are needed
to interpret the behavior of the field. Henceforth, a regime of thick
layer and high conductivity contrast such that σ2∕σ1 ≫ jik1h2j is
considered to obtain approximate expressions for the secondary
fields in equation 16. In this case, equation 16 reduces to

EðSÞ
z ¼ Ids

4πσ1

�
π4σ42
8σ41

�X∞
n¼0

ðik1pnÞ3f ne−ik1ðh−zÞCn ;

f n ¼
ik1 þ σ1∕ðσ2h2Þ

ik1ðCn − 1Þ þ σ2∕ðσ1h2Þ

þ ik1 − σ1∕ðσ2h2Þ
ik1ðCn þ 1Þ þ σ2∕ðσ1h2Þ

;

pn ¼ 2nþ 1;

Cn ¼
�
1þ p2nπ2σ2

4σ1

�
1∕2

; (17)

which is in very good agreement with semianalytical calculations
(see Figure 4a). The limiting behavior of the infinite summation
in 17 yields

lim
n→∞

EðSÞ
z ∼

Is1ds
4πσ1

e−ik1ðh−zÞ

ðh − zÞ3 2
�
1þ ik1h2

σ2
σ1

�

−
Is2ds
4πσ1

e−iksðh−zÞ

ðh − zÞ3 2
�
1þ iksðh − zÞ þ 1

2
ðiksðh − zÞÞ2

�

Is1 ¼ I
π4

16

�
σ2
σ1

�
2

;

Is2 ¼ Iπ2
�
σ2
σ1

�
3

;

ks ¼
p0π
4

k2; (18)

which represents the familiar dipolar character of image sources at
near offsets, already recognized in the previous section. The first
term captures the effect of a biased image, but most importantly,
the second term represents the fields due to an image source located
in a whole-space medium which has the properties of the resistive
layer (ks ∝ k2), i.e., this field is associated with the charges induced
in the lower boundary by the fields due to the charges in the upper
boundary.
Time-domain expressions of the secondary fields (B-6, B-7, B-8,

B-9, and B-10) are obtained from the inverse Fourier transform
of equation 17, assuming a step on excitation. The time-domain
behavior of the total field is obtained by superimposing that of
the direct field, the image term, and secondary field, i.e.,

ezðtÞ ¼ eðDÞz − eðIÞz þ eðSÞz

eðD;IÞz ðtÞ ¼ Ids
4πσ1R3

���
4

π1∕2
θ3R3 þ 6

π1∕2
θR

�
e−θ

2R2 þ 3erf cðθRÞ
�
Δ2

R2

−
��

4

π1∕2
θ3R3 þ 2

π1∕2
θR

�
e−θ

2R2 þ erf cðθRÞ
��

;

θ ¼
�
μ0σ1
4t

�
1∕2

eðSÞz ¼ eðAÞz þ eðBÞz

eðAÞz ¼ Ids
4πσ1

�
π4σ42
8σ41

�X∞
n¼0

En

�
Fnffiffiffiffiffi
πt

p e−γ
2
n∕4t − Gneαnγnþα2nterf c

�
αn

ffiffi
t

p þ γn
2

ffiffi
t

p
��

. (19)

Here, R ¼ ðx2 þ Δ2Þ1∕2, and Δ ¼ zþ h, z − h for the direct and im-
age components, respectively, and the coefficients Fn, Gn, En, αn,
and γn are described in equations B-7 and B-9. The expression for
eðBÞz is obtained from eðAÞz after manipulating the coefficients as
shown in equation B-9. The formulas in equation 19 are verified
in Figure 4b, where the total field (solid line) is compared with
semianalytical estimates (circles). The agreement is very good, thus
validating the analysis that follows.
The behavior of the direct and image components is easy to see in

Figure 4b. At late times, the contribution of the image term (in
crosses) asymptotes and opposes that of the direct field, and thereby,
the residual field is dominated by the secondary field. From a prac-
tical standpoint, this suggests that a time threshold could be defined
beyond which the layer response begins to dominate. Indeed,
assuming that jh − zj ≫ r, the direct and image term asymptote
(ezðtÞðIÞ → ezðtÞðSÞ) at time t0, such that

Figure 3. Layer response for σ1∶σ2 ¼ 50 contrast, h2 ¼ 30 m,
h ¼ jzj ¼ 1 km, and r ¼ 200 m. Symbols depict semianalytical
calculations and solid lines are obtained using equation B-1. Dashed
lines show the results obtained the high-contrast, thin-layer
(σ2∕σ1 ≫ jik1h2j) approximation. The latter is accurate only in
the low-frequencies regime.
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μ0σ1
4t0

¼ 1

ðr2 − ðh − zÞ2Þ ln

�ðh − zÞ2
2r2

�
; (20)

beyond which the decay of the direct and image fields behaves
as ðμ0σ1∕4tÞ1∕2.
The secondary fields (eðSÞz ), carrying the dependence of the

layer’s properties, can be interpreted as due to the superposition
of an infinite number of biased image sources (Figure 5). Therefore,
the time dependence in the summation on eðA;BÞz closely corresponds
to that of the time-domain behavior of the field due to a vertical
dipole in a homogeneous medium, excited by an exponential decay.
This is given by a functional of the form (Wait, 1960)

Aðβ; tÞ ¼ αffiffiffiffiffi
πt

p e−α
2∕4t

þ e−βtþα
ffiffi
β

p �
1 −

ffiffiffi
β

p
α

�
erf c

�
α

2
ffiffi
t

p þ
ffiffiffiffi
βt

p �
;

α2 ¼ σμ0R; (21)

where the excitation I ¼ I0e−βt , σ is the conductivity of the whole-
space and R the source-receiver distance.
The first term in equation 21 controls the rise speed of the func-

tion, therefore, the maximum point in the curve can be computed by
negating its first derivative with respect to time. Performing this
calculation for eðAÞz in equation 19 yields the peak time

tm ¼ μ0σ1ðh − zÞ2
�
1þ

�
πpn
2

�
2 σ2
σ1

�
. (22)

For small values of pn, the term in parentheses ∼1, and thereby
tm ∼ μ0σ1ðh − zÞ2, but as pn increases, tm ∼ μ0σ2½pnðh − zÞπ∕2�2.
In other words, increasing n in the summation yields the contribu-
tion to the field due to dipole sources located farther below the layer
(at a distance¼pnðh − zÞπ∕2). Furthermore, equation 22 also shows
that as n increases, the maximum response shifts from having a
dependence on the background conductivity σ1 to depending on that
of the layer, i.e., the layer’s response appears at a linearly increas-
ing time.
The decay rate of the image source represents the diffusion speed

of the charges induced at the boundaries, and ultimately drives
the rate of decay of the field. Comparing the second terms of
equation 21 and eðAÞz in equation 19 reveals that

β ¼ α2n ¼
1

μ0σ1

1

½σ1ðCn − 1Þ�2
�
σ2
h2

�
2

(23)

Figure 5. (a) The real system of a dipole in the presence of a
resistive layer can be represented by (b) the fictitious problem of
a dipole source and a superposition of dipolar image sources.
The properties of the image sources (position and moment) are
determined such that the boundary conditions of the real problem
are satisfied by the fictitious problem. The solution to the boundary
value problem yields a main image located below the upper inter-
face (at z ¼ h), and the superposition of secondary images which
give rise to the secondary field.

Figure 4. (a) Frequency and (b) time-domain response of the resis-
tive layer in the near-offset (250 m), high-contrast (σ2∶σ1 ¼
1∶100), and thick-layer (h2 ¼ 250 m) approximation. Vertical di-
pole source and receiver are located at h ¼ 1 km above the layer.
The reversed polarity of the image source opposes the direct field,
thereby revealing the residual layer response.
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is driven by the inverse of the resistivity-thickness product of the
layer, i.e., the charges induced on the boundaries will diffuse slower
for more resistive (or thicker) layers. This suggests that the diffusion
of the boundary charge density is driven by conduction in the upper
medium. Indeed, as the resistivity of the layer increases or as the
layer thickens, the conduction path is dominated by the conductor
above the layer. In this medium, the field decays slower, and there-
by, it yields a slower decay rate for the charges induced at the
boundary.
Consider now the fields due to a HED. The detailed derivation of

the expressions describing the fields is presented in Appendix B.
The following main results are summarized as required by the
analysis. The total field

Ex ¼ EðSÞ
x − EðIÞ

x þ ðEðTEÞ
x þ EðTMÞ

x Þ (24)

comprises the direct (S) and layer response comprised of the image
term (I), and the secondary layer response decomposed in the TE
and TMmodes. Each component can be approximately described as

EðIÞ
x ¼ Ids

4πσ1

k21
ðh − zÞ e

−ik1ðh−zÞ
�
1þ 1

ik1ðh − zÞ þ
1

ðik1ðh − zÞÞ2
�
;

EðTEÞ
x ¼ Ids

4πσ1

k21
2ðh − zÞ e

−ik1ðh−zÞ;

EðTMÞ
x ¼ Ids

4πσ1

k21
ðh − zÞ e

−ik1ðh−zÞ
�
1þ 2

ik1ðh − zÞ þ
2

½ik1ðh − zÞ�2
�

þ EðTMSÞ
x . (25)

The TE and TM expressions are in good agreement with semiana-
lytical estimates (see Figure 6), thereby validating the analysis that
follows.

The EðTMSÞ
x component is given by the infinite summation result-

ing from Kernel Modulation solution in equation B-17, i.e.,

EðTMSÞ
x ¼ Ids

4πσ1
ð−2πiÞ k2

2

X∞
n¼0

�
Z1

Z1 þ Ẑ2

�
λ¼λn

λ3n
u1n

Wne−u1nðh−zÞ;

Wn ¼
�
1 −

k21
λ2n

�
¼ 1þ 1

p2n

�
σ1
σ2

4

π2

�
. (26)

As the summation index n increases, the pole λn increases, and

in turn, the coefficient Wn → 1. In this case, EðTMSÞ
x → EðSÞ

z of
equation 16, i.e., the secondary TM response resembles that
observed in the vertical source-receiver configuration.
The time-domain transient decay expressions of the fields are

summarized by

exðtÞ ¼ eðSÞx − eðIÞx þ eðTEÞx þ eðTMÞ
x ;

eðSÞx ¼ Ids
4πσ1

2

r3

�
2θr

π1∕2
e−θ

2r2 − erf cðθrÞ
�
;

θ ¼
�
μ0σ1
4t

�
1∕2

;

eðIÞx ¼ Ids
4πσ1

1

ðh − zÞ3
��

4θ3ðh − zÞ3
π1∕2

þ 2θðh − zÞ
π1∕2

�

e−θ
2ðh−zÞ2 þ erf c½θðh − zÞ�

�
;

eðTEÞx ¼ −
Ids
4πσ1

1

ðh − zÞ3
�
2θ3ðh − zÞ3

π1∕2

�
e−θ

2ðh−zÞ2 ;

eðTMÞ
x ¼ Ids

4πσ1

1

ðh − zÞ3
��

4θ3ðh − zÞ3
π1∕2

þ 4θðh − zÞ
π1∕2

�

e−θ
2ðh−zÞ2 þ 2erf c½θðh − zÞ�

�
þ eðTMSÞ

x ðtÞ. (27)

The validity of the solution is established again by comparison of
the total field with semianalytical estimates, as shown in Figure 7a.
The dominant contribution of the TM mode EðTMÞ

x partially op-
poses the image fields, thus the frequency spectrum of the scattered
field is driven by the TE mode, which is independent of the layer’s
parameters. From a practical point of view, the final superposition
that yields the total field yields a masked response of the layer,
dominated by the direct field and TE mode, and thereby, insensitive
to the properties of the layer.
In contrast to the late time behavior observed in the vertical

source-receiver configuration (see. Figure 4b), in the horizontal
source-receiver configuration, the superposition of the TM and TE
secondary response opposes the contribution of the image term. In
other words, the HED does not produce such an image field to
oppose that of the direct component as observed in the vertical
source-receiver configuration. Evidently, from Figure 7a, the over-
all behavior results in a dominating direct field, thereby explaining
the lack of sensitivity to the properties of the layer.

Figure 6. Comparison of analytical and semianalytical evaluation
of the integrals. The model consists of a 20-m-thick, 40-Ωm layer,
embedded in a 1-Ωmwhole-space, and the HED source is located at
zs ¼ −h ¼ 2500 m.
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CONCLUSIONS

In this paper, we have derived expressions for the EM fields
observed at near offsets from a vertical and horizontal electric
dipole source located above a resistive layer. Different techniques
have been applied to examine the behavior of the fields in frequency
and time domain. Power series expansion of the fields in the fre-
quency domain have been obtained using the saddle point method
of integration. The formulas describing the fields are in good
agreement when checked against semianalytical estimates of the
frequency spectrum of the fields. However, the validity of the solu-
tion only holds for short wavelengths in the conducting medium,
much shorter than the vertical distance to the source h, i.e., such

that jk1ðh − zÞj ≫ 1. As a consequence, the near DC behavior of
the fields is not appropriately accounted for in the asymptotic ex-
pansion formulation. There is a lower bound for the frequency of
applicability of this solution, and thereby, the time-domain inverse
(Laplace transformed) of the asymptotic formulas will be biased for
time scales longer than that of the threshold frequency. To overcome
this limitation, a Kernel modulation scheme has been applied to
evaluate the convolution integral to the lowest frequency required.
The expressions obtained for the fields using this technique are in
excellent agreement with the semianalytical calculation. The solu-
tion is approximated using a high-contrast, thick layer assumption
which yields simplified expressions for the frequency spectrum and
time-domain transient decay of the field, which in turn were used
for the analytical study of the properties of the fields.
Regarding the structure of the fields in the near-offset

regime, the solution for the VED and HED indicate that the
fields behave remarkably different from those observed at far
offsets. At near offsets, the field is better described as that due
to a superposition of image sources, associated with the charges
induced at the boundaries of the system, in contrast to the far offsets
behavior which is described as a guided mode associated with
preferential energy flow inside the layer and leakage toward the sur-
rounding medium.
The transient decay of the fields due to each image source is the

same as that of a dipole driven by an exponentially decaying source,
with a decay constant that depends inversely on the resistivity-
thickness product of the layer. This shows that the diffusion rate
of the charges distributed on the layer boundaries decreases with
increasing resistivity (or thickness) of the layer. The peak magni-
tude of the fields due to an image source appears at increasing times,
for those image sources located farther from the layer. For the closer
image sources, the peak amplitude of the resulting field will depend
on the background conductivity, whereas for the distant image
sources, the peak amplitude will depend predominantly on the prop-
erties of the layer. This explains the late time response expected for
the effect of the layer. Image theory shows that the vertical position
of each image source is associated with the horizontal spread of the
charges density at the boundaries. In fact, the charge density repre-
sented by farther image sources decreases smoothly away from the
vertical axis along the horizontal plane of the boundaries.
Regarding the VED excitation, it has been found that the late time

response of the image term appears to cancel the direct field, thus
providing the response of the layer described by the Kernel mod-
ulation solution. For a HED, the superimposed contributions of the
TE and TM modes appear to reinforce the direct fields instead, thus
masking the effect of the layer, which is also described by the
Kernel modulation expression. The solution obtained by the Kernel
modulation scheme allows to more clearly infer the contribution of
the dipolar character of the charges induced in the lower boundary,
and in passing, to verify that the concept of the superposition of
images also holds in the low-frequency limit where the asymptotic
solutions are not accurate enough.
As a last remark, it is important to notice that the expressions de-

rived in this work have been oversimplified to render interpretable
formulas, either by studying their limiting behavior, or by constrain-
ing the analysis based on the skin depth of the fields in the overbur-
den, or the conductivity contrast in relation to the thickness of the
layer. Therefore, caution must be exercised when using the derived
expression in comparison to numerical estimates of the fields.

Figure 7. (a) Time-domain analytic solution in comparison to semi-
analytical estimates of the scattered field (superposition of image,
and secondary fields, TE, and TM) and (b) components of the
scattered field solution 27. The curved labeled as eðIÞx þ eðTMIÞ

x

corresponds to the superposition of the image term eðIÞx and the
image like part of the TM field (first term of eðTMÞ

x ).
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APPENDIX A

ASYMPTOTIC REPRESENTATION

The half-saddle point method of integration described in Baños
(1966) (§5) is used to evaluate the integrals in equations 1, 2, 3, and
4. In this scheme, a suitable conformal transformation (λ → x)
yields an expression of the form

e−ik1ðh−zÞ
Z∞

0

ΦðxÞe−1
2
x2dx (A-1)

for the Fourier-Bessel integrals equations 1, 2, 3, and 4. The
function ΦðxÞ is a power series expanded version of the integration
kernels, i.e.,

ΦðxÞ ∼
X∞
m¼0

A2mþ1x2mþ1 (A-2)

such that the integral is then evaluated term by term, using the
formula

Z∞

0

x2mþ1e−
1
2
x2dx ¼ 2mm!. (A-3)

SERIES EXPANSION — VED

Consider the fields due to the vertical electric dipole source
(equation 1). In preparation for the integration in equation A-1,
the integrands in each of equations 1, 2, 3, and 4are expanded
in series of x so as to construct the function ΦðxÞ. To this end,
the transformation from λ ¼ k1 sin α is first applied, such that in
the alpha plane

u1 ¼ ðλ2 − k21Þ1∕2 ¼ ik1 cos α;

u2 ¼ ðλ2 − k21Þ1∕2 ¼ iðk22 − k21 sin
2 αÞ1∕2: (A-4)

The formulas

ξ ¼ cx; c ¼ ð−ik1ðh − zÞÞ−1∕2; cos α ¼ 1 −
1

2
ξ2;

sin α ¼ ξ

�
1 −

1

4
ξ2
�

1∕2
; sin αdα∕dx ¼ cξ (A-5)

are then used to attain the second transformation from α → x.
The small argument approximation tanhðu2h2Þ ∼ u2h2 is used to

simplify the series expansion of

1

K1 þ Z ̃ 2
¼ σ1σ2

�
u2σ1 þ u1σ2 tanhðu2h2Þ

2u1u2σ1σ2 þ tanhðu2h2Þðu21σ22 þ u22σ
2
1Þ
�

∼ σ1σ2

�
σ1 þ u1σ2h2

2u1σ1σ2 þ h2ðu21σ22 þ u22σ
2
1Þ
�
. (A-6)

It could be argued that this approximation cannot be used due to the
∞ limit for the integration, as in fact u2h2 → ∞ as λ → ∞
(u22 ¼ λ2 − k21), i.e., it diverges. However, as jλj ≫ jk1j, jk2j,
u1 ∼ λ, u2 ∼ λ, in which case equation A-6 reduces to

1

K1 þ ~Z2

∼
σ1
2λ

�
1þ σ2

σ1
tanhðu2h2Þ

1þ σ1
σ2

tanhðu2h2Þ
�

(A-7)

where the denominator increases faster than the numerator, and
therefore, the approximated integrand will converge regardless.
The expanded version of equation A-6 yields

1

K1 þ ~Z2

∼
N0

D0

�
1þ N2ξ

2

1þ D2ξ
2 þ D4ξ

4 þ : : :

�
;

D0 ¼ −k21σ22h2
�
1þ n2

�
1 −

2i
k1h2

��
;

D2 ¼
k21σ

2
2h2

D0

�
1þ n4 −

in2

k1h2

�
;

D4 ¼ −
k21σ

2
2h2

4D0

ð1þ n4Þ;

N0 ¼ σ1σ
2
2ðn2 þ ik1h2Þ;

N2 ¼ −
ik1h2

2ðn2 þ ik1h2Þ
; (A-8)

where n ¼ k1∕k2 has been defined.
In the near-offset approximation of interest in this work, the small

argument approximation (Abramowitz and Stegun, 1972) can be
used to expand the Bessel function, such that

J0ðk1r sin αÞ ∼ 1þ C2ξ
2 þ C4ξ

4 þ : : :

C2 ¼
ðik1rÞ2

4
;

C4 ¼ −
ðik1rÞ2
64

ð4 − ðik1rÞ2Þ (A-9)

for k1r sin α → 0, i.e., where the magnitude of J0ðk1r sin αÞ is the
highest.
The series expansion of the Bessel function of the first order is

also obtained from the small argument approximation (Abramowitz
and Stegun, 1972, equation 9.1.10), and thereby, J1ðk1r sin αÞ can
be conveniently represented by

J1ðk1r sin αÞ ¼ λr
2
j1ðλrÞ;

j1ðλrÞ ∼ 1þ c2ξ2 þ c4ξ4 þ : : :

c2 ¼
ðik1rÞ2

8
;

c4 ¼ −
ðik1rÞ2
32

�
4 −

ðik1rÞ2
6

�
. (A-10)

In preparation for completing the expansions required for the inte-
grand of Ez, equation 1 is rewritten as an integral in x instead,
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EðSÞ
z ¼ Ids

4πσ

2

σ1
e−ik1a

Z∞

0

�
1

K1 þ Ẑ2

λ3J0ðλrÞ
�
e−

x2
2 dλ; (A-11)

where a ¼ h − z. The integrand in brackets in equation A-11 is then
written as

ΦðxÞ ¼ 1

K1 þ Ẑ2

J0ðλrÞðsin2 α cos αÞðsin αdα∕dxÞ
(A-12)

and thus using equation A-9

J0ðλrÞðsin2 α cos αÞðsin αdα∕dxÞ
∼ cξ3ð1þ P2ξ

2 þ P4ξ
4 þ : : : Þ;

P2 ¼
ðik1rÞ2

4
−
3

4

P4 ¼
1

8
−
ðik1rÞ2

4

�
1 −

ðik1rÞ2
16

�
; (A-13)

which yields the expanded integrand

ΦðxÞ ¼ N0

D0

ðc4x3 þ F2c6x5 þ F4c8x7 þ : : : Þ;

F2 ¼ Q2 þ P2;

F4 ¼ Q4 þ P4 þ Q2P2;

Q2 ¼ N2 − D2;

Q4 ¼ D2
2 − D4 − D2N2. (A-14)

Replacing A-14 and integrating term by term as shown in A-3 yields

EðSÞ
z ∼

Ids
4πσ

e−ik1a

a2

�
4ik1

2þ ik1h2

��
1 −

4F2

ik1a
þ 24F4

ðik1aÞ2
�

(A-15)

Continuing with Er , equation A-10 is replaced in the corresponding
integral of 1, which yields

EðSÞ
x ¼ −

Ids
4πσ

r
σ1

e−ik1a
Z∞

0

�
1

K1 þ Ẑ2

u1λ3j1ðλrÞ
�
e−

x2
2 dλ.

(A-16)

Following the procedure outlined above for Ez the integration for
Er yields

EðSÞ
x ∼ −

Ids
4πσ

e−ik1a

a2

�
2rk21

2þ ik1h2

��
1 −

4F2

ik1a
þ 24F4

ðik1aÞ2
�
;

(A-17)

where the Fi coefficients are computed as in equation A-14, using
the expressions for Qi as in equation A-14, but with the Pi coeffi-
cients determined from the expansion of the integrand in brackets in
equation A-16 instead, i.e.,

j1ðλrÞðcos2 α sin2 αÞðsin αdα∕dxÞ
∼ cξ3ð1þ P2ξ

2 þ P4ξ
4 þ : : : Þ;

P2 ¼
ðik1rÞ2

8
−
5

4

P4 ¼
1

2
−
6ðik1rÞ2

32

�
1 −

ðik1rÞ2
36

�
. (A-18)

Similarly, the expression for the azimuthal component of the mag-
netic fields can be manipulated to yield,

HðSÞ
y ¼ Ids

4π

r
σ1

e−ik1a
Z∞

0

�
1

K1 þ Ẑ2

λ3j1ðλrÞ
�
e−

x2
2 dλ; (A-19)

which results in the asymptotic series

HðSÞ
y ∼

Ids
4π

e−ik1a

a2

�
2rk1

2þ ik1h2

��
1 −

4F2

ik1a
þ 24F4

ðik1aÞ2
�
.

(A-20)

Again, the Fi coefficients are determined by equation A-14, with the
Pi coefficients given by

P2 ¼
ðik1rÞ2

8
−
3

4

P4 ¼
1

8
−
ðik1rÞ2

8

�
1 −

ðik1rÞ2
24

�
. (A-21)

As given by equations A-15, A-17, and A-20, the closed-form
solutions are in good agreement with the semianalytical estimates.
However, it is admitted that the asymptotic expressions hold best
under high-frequency assumptions (jk1ðh − zÞj ≫ 1) and with the
requirement of small layer perturbation (h ≫ h2), such as those
described in Figure A-1. Under these conditions, equation A-15
is suitable to analyze the structure of the fields in the near-offset
approximation, of the vertical source-receiver configuration. How-
ever, to better understand the structure of the fields, the expansion
coefficients in equation A-15 are further approximated to dominant
order inO½ðik1h2Þ2� andO½ðik1rÞ2�. To this end, consider the expres-
sions for F2 and F4 in equation A-14 for the Ez component,

F2 ∼ −
1

4
½1 − 2n2ik1h2 þ n2ðik1h2Þ2 −

n2

2
ðik1h2Þ3 þ : : : − ðik1rÞ2�;

F4 ∼ −
ik1h2
16

�
1 − 4n4ik1h2 þ 4n4ðik1h2Þ2 −

15n2

4
ðik1h2Þ3 þ : : :

þ ðik1rÞ2
�

2

ik1h2
− 2n2 þ 1þ n2ik1h2 −

n2

2
ðik1h2Þ2

��
; (A-22)

where n2 ¼ σ1∕σ2 ≫ 1 (n2 ¼ 30 for the example in Figure A-1).
Keeping dominant terms, replacing the approximated coefficients
in equation A-15, yields

EðSÞ
z ∼

Ids
4πσ1

e−ik1a

a3

�
4

ik1h2 þ 2

��
1þ ik1a − 2n2ik1h2 − ðik1rÞ2

−
3

2

h2
a

�
1 − 4n4ik1h2 þ 2ik1r

�
r
h2

���
; (A-23)
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where a ¼ h − z. In addition, assuming that h2 ≪ ðh − zÞ, and
regarding r ∼ h2, but r ≪ 21∕2h2σ1∕σ2, equation A-23 can be
further approximated as

EðSÞ
z ∼

I1ds
4πσ1

e−ik1ðh−zÞ

ðh − zÞ3 2½1þ ik1ðh − zÞ − 2n2ik1h2�

−
I2ds
4πσ1

e−ik1ðh−zÞ

ðh − zÞ3 2½1þ ik1ðh − zÞ − 4n2ik1h2�

I1 ¼ I;

I2 ¼ I
ik1h2
2

; (A-24)

which renders a more amenable expression for the analysis.

SERIES EXPANSION — HED TM MODE

Consider now the TM component of the fields due to the horizon-
tal electric dipole source. Using approximation tanhðu2h2Þ ∼ u2h2,
the integration kernel in equation 3 can be written as

Ẑ2

Z1 þ Ẑ2

∼ σ1

�
u1σ2 þ u22σ1h2

2u1σ1σ2 þ h2ðu21σ22 þ u22σ
2
1Þ
�
; (A-25)

which expands to

D ¼ 2u1σ1σ2 þ h2ðu21σ22 þ u22σ
2
1Þ;

DðξÞ ¼ D0ð1þ D2ξ
2 þ D4ξ

4Þ;

D0 ¼ −k21σ22h2
�
1þ n2

�
1 −

2i
k1h2

��
;

D2 ¼ −
�
1þ n4 − in2∕ðk1h2Þ
1þ n2 − 2in2∕ðk1h2Þ

�
;

D4 ¼
1þ n4

4½1þ n2 − 2in2∕ðk1h2Þ�
(A-26)

for the denominator,

N ¼ u1σ2 þ u22σ1h2;

NðξÞ ¼ N0ð1þ N2ξ
2 þ N4ξ

4Þ;
N0 ¼ ik1σ1σ2ð1þ ik1h2Þ;

N2 ¼ −
1

2

�
1þ 2ik1h2n2

1þ ik1h2

�
;

N4 ¼
ik1h2n2

4ð1þ ik1h2Þ
(A-27)

for the numerator, and the Qi coefficients are evaluated using
equation A-14. As before, the expression for the fields are
rewritten as

EðTMÞ
x ¼ Ids

4πσ1

Z∞

0

2Ẑ2

Z1 þ Ẑ2

��
1

2
j1 − J0

�
cos2 α sin αðdα∕dxÞ

�

e−
1
2
x2dx; (A-28)

and the expression in brackets expanded as

PðξÞ ¼
�
1

2
j1 − J0

�
cos2 α sin αðdα∕dxÞ

¼ −
1

2
cξð1þ P2ξ

2 þ P4ξ
4 þ : : : Þ;

P2 ¼ −1þ 3

8
ðik1rÞ2;

P4 ¼
1

4
−
ðik1rÞ2
32

�
15 −

5

6
ðik1rÞ2

�
;

P6 ¼
ðik1rÞ2
32

�
6 −

5

6
ðik1rÞ2

�
. (A-29)

Replacing equations A-26 and A-27 yields

EðTMÞ
x ∼

Ids
4πσ1

�
1þ ik1h2
2þ ik1h2

�
k21
a
e−ik1a

�
1 −

2F2

ik1a
þ 8F4

ðik1aÞ2
− : : :

�
; (A-30)

where the Fi coefficients are evaluated as inequation A-14.

Figure A-1. Fields observed above the layer at r ¼ 100,
z ¼ −h ¼ −2.5 km, due to a VED source. The resistive layer is
h2 ¼ 30 m, and ρ2 ¼ 30 Ωm, and the background resistivity is
ρ1 ¼ 1 Ωm. The symbols are then obtained using a semianalytical
evaluation of the Bessel convolution integral (Anderson, 1979).
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Similarly EðTMÞ
z can be manipulated to yield,

EðTMÞ
z ¼ Ids

4πσ1
k41re

−ik1a

Z∞

0

Ẑ2

Z1 þ Ẑ2

½j1ðλrÞsin2 α cos αðsin αdα∕dxÞ�e−1
2
x2 dx; (A-31)

and the expression in brackets is expanded to

PðξÞ ¼ j1ðλrÞsin2 α cos αðsin αdα∕dxÞ
¼ cξ3ð1þ P2ξ

2 þ P4ξ
4Þ;

P2 ¼ −
3

4
þ ðik1rÞ2

8

P4 ¼
1

8
−
ðik1rÞ2
32

�
7 −

ðik1rÞ2
6

�
; (A-32)

which yields

EðTMÞ
z ∼ −

Ids
4πσ1

�
1þ ik1h2
2þ ik1h2

�
2k21r
a2

e−ik1a
�
1 −

4F2

ik1a
þ 24F4

ðik1aÞ2
− : : :

�
; (A-33)

where the Fi coefficients are given by equation A-14, and Pi given
by equation A-32.
The HðTMÞ

y is rewritten

HðTMÞ
y ¼ Ids

4π
k21e

−ik1a
Z∞

0

2Ẑ2

Z1 þ Ẑ2

��
1

2
j1 − J0

�
cos α sin αðdα∕dxÞ

�

e−
1
2x

2

dx; (A-34)

and now the expression in brackets is expanded to

PðξÞ ¼
�
1

2
j1 − J0

�
cos α sin αðdα∕dxÞ

¼ −
1

2
cξð1þ P2ξ

2 þ P4ξ
4Þ;

P2 ¼ −
1

2
þ 3

8
ðik1rÞ2;

P4 ¼ −
ðik1rÞ2
32

�
9 −

5

6
ðik1rÞ2

�
; (A-35)

which yields

HðTMÞ
y ∼ −i

Ids
4π

�
1þ ik1h2
2þ ik1h2

�
k1
a

e−ik1a
�
1 −

2F2

ik1a
þ 8F4

ðik1aÞ2
− : : :

�
; (A-36)

where the Fi coefficients are given by equation A-14, with Pi given
by equation A-35 instead.

SERIES EXPANSION — HED TE MODE

Consider now the TE component of the fields due to the horizontal
electric dipole source. Using the approximation tanhðu2h2Þ ∼ u2h2,
the integration kernel in equation 4 yields

1

iμ0ω
1

Y1 þ Ŷ2

∼
1þ u1h2

2u1 þ h2ðu21 þ u22Þ
; (A-37)

which when expanded provides

D ¼ 2u1 þ h2ðu21 þ u22Þ;
DðξÞ ¼ D0ð1þ D2ξ

2 þ D4ξ
4Þ;

D0 ¼ 2ik1 − h2k21ð1þ n−2Þ;

D2 ¼ −
1þ 2ik1h2

2þ ik1h2ð1þ n−2Þ ;

D4 ¼
ik1h2

2þ ik1h2ð1þ n−2Þ (A-38)

for the denominator, and

N ¼ 1þ u1h2 ¼ N0ð1þ N2ξ
2Þ;

N0 ¼ 1þ ik1h2

N2 ¼ −
ik1h2

2ð1þ ik1h2Þ
(A-39)

for the numerator. The Qi coefficients are evaluated using
equation A-14. Following the same procedure, EðTEÞ

x in equation 4
is rewritten as

EðTEÞ
x ¼ Ids

4πσ1
k41e

−ik1a

Z∞

0

1

iμ0ω
1

Y1 þ Ŷ2

½j1 cos α sin αðdα∕dxÞ�e−1
2
x2dx: (A-40)

The expression in brackets is expanded to

PðξÞ ¼ j1 cos α sin αðdα∕dxÞ
¼ cξð1þ P2ξ

2 þ P4ξ
4Þ;

P2 ¼ −
1

2
þ 1

8
ðik1rÞ2;

P4 ¼ −
ðik1rÞ2
32

�
3 −

1

6
ðik1rÞ2

�
;

P6 ¼ −
ðik1rÞ2
64

�
1 −

1

6
ðik1rÞ2

�
; (A-41)

which yields the expression for the fields

EðTEÞ
x ∼

Ids
4πσ1

�
1þ ik1h2
2þ ik1h2

�
k21
a

e−ik1a
�
1 −

2F2

ik1a
þ 8F4

ðik1aÞ2
− : : :

�
: (A-42)

Near-offset response of the resistive layer F365

Downloaded 11 Jun 2012 to 146.23.4.26. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



The Fi coefficients are given by equation A-14, with Pi given by
equation A-41.
The EðTEÞ

z component vanishes identically on the TE mode. The
HðTEÞ

y component is rewritten as

HðTEÞ
y ¼ Ids

4π
k31e

−ik1a

Z∞

0

1

iμ0ω
1

Y1 þ Ŷ2

½j1cos2 α sin αðdα∕dxÞ�e−1
2
x2dx. (A-43)

The expression in brackets is expanded to

PðξÞ ¼ j1 cos2 α sin αðdα∕dxÞ
¼ cξð1þ P2ξ

2 þ P4ξ
4Þ;

P2 ¼ −1þ 1

8
ðik1rÞ2;

P4 ¼
1

4
−
ðik1rÞ2
32

�
5 −

1

6
ðik1rÞ2

�
; (A-44)

which yields this expression for the field

HðTEÞ
y ¼ Ids

4π

�
1þ ik1h2
2þ ik1h2

�
k1
a

e−ik1a
�
1 −

2F2

ik1a
þ 8F4

ðik1aÞ2
− : : :

�
: (A-45)

The Fi coefficients are given by equation A-14, with Pi given by
equation A-44.
As given by equations A-30, A-42, A-36, A-45, and A-33, the

closed-form solutions are in very good agreement with the semia-

nalytical estimates (Figure A-2), and thereby, they are suitable to
analyze the structure of the fields in the near-offset approximation.

APPENDIX B

KERNEL MODULATION SOLUTION

To introduce the technique consider for instance the integration
leading to the layer response in the vertical component Ez in
equation 1. The integrand is an odd function of λ and thereby
extending the limits to −∞ amounts to zero after integration. The
usual trick is to transform the integral to a Hankel convolution
(Baños, 1966), then extend the limits to −∞, and add the contribu-
tion of the resistive pole’s residue to that around the branch points of
the kernel at k1 and k2. However, it has been already pointed out
that this solution diverges in the vicinity of the source, due to the
singular behavior of Hð1Þ

0 ðλr → 0Þ.
In reference to Figure B-1, let I represent the integral from

0 → ∞ over the real axis of λ (path Γa), as defined in any of
the expressions in equation 1. As the integrand is odd, the integral
from −∞ → 0 (path Γb) is −I, and also the integral from 0 → −i∞
(path Γc) is I (as there are no singularities in the lower-left quad-
rant). It follows that the contribution from the pole’s residue (at λ0)
plus that around the branch points (path Γd) is equal to that eval-
uated through −Γc þ Γa, which is obviously zero.
The method of kernel modulation consists of multiplying the in-

tegral’s kernel by a modulating function mðλÞ ¼ tanhðλ∕k2Þ. This
function does not modify significantly the kernel for those λs of
greater weight (as the unperturbed kernel tends to zero very
rapidly as λ → 0), but it does invert the kernel for the negative λs,
thereby making it even, and allowing to extend the limits to −∞.
In the modulated integral, the contribution along the path Γd and

the residue at the pole λ0 do not vanish, but they can be neglected if
the small perturbation assumption for the modulating function
holds. In this case, the modulated integral can be evaluated approxi-
mately from the residues at the poles of the modulating function
alone. These poles are located at λn ¼ −ik2ð2nþ 1Þπ∕2 for
n ¼ 0; 1; 2; : : : (see Figure B-2), and the superposition of the
residues of a given kernel at the position of each pole (Morse
and Feshbach, 1953) yields the expressions for the fields.

SOLUTION FOR A VED EXCITATION

Applying the scheme above to the expressions in 1 yields

EðSÞ
z ¼ Ids

4πσ1
ð−i2πÞ

X∞
n¼0

�
K1

K1 þ Ẑ2

�
λ¼λn

λ3nk2
u1n

J0ðλnrÞe−u1nðh−zÞ;

EðSÞ
x ¼ −

Ids
4πσ1

ð−i2πÞ
X∞
n¼0

�
K1

K1 þ Ẑ2

�
λ¼λn

λ2nk2J1ðλnrÞe−u1nðh−zÞ;

HðSÞ
y ¼ Ids

4π
ð−i2πÞ

X∞
n¼0

�
K1

K1 þ Ẑ2

�
λ¼λn

λ2nk2
u1n

J1ðλnrÞe−u1nðh−zÞ; (B-1)

where u21n ¼ λ2n − k21. These expressions are in excellent agreement
with semianalytical evaluation of the convolution integrals, as it is
evident by comparing the solid lines versus the symbols in Figure 3.
It is important to notice that the expressions in equation B-1 will
render accurate estimates to whatever desired low-frequencies limit,
depending only on the number of harmonics included in the sum-
mation (typically n > 100). However, further simplification is

Figure A-2. Fields observed above the layer at r ¼ 100,
zs ¼ −h ¼ −2.5 km, due to a HED source. The resistive layer is
h2 ¼ 30 m, and ρ2 ¼ 30 Ωm, and the background resistivity is
ρ1 ¼ 1 Ωm. The symbols are then obtained by semianalytical eva-
luation of the Bessel convolution.
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needed to obtain expressions that are better suited to interpret the
behavior of the fields.
Using equation A-6, it is easy to show that

1

K1 þ Ẑ2

∼
σ1σ2

h2ðσ21 þ σ22Þ
�

A
u1n − α1

þ B
u1n − α2

�
;

A ¼ −
�
α1σ2h2
α2 − α1

�
;

B ¼ α2σ2h2
α2 − α1

;

α1;2 ¼
1

h2

�
−
σ2
σ1

�
�
σ22
σ21

− h22k
2
1

��
1∕2

. (B-2)

This equation can be further simplified under suitable approxima-
tions for the frequency range and model’s properties. For example, a
high-contrast and thin-layer approximation (σ2∕σ1 ≫ jik1h2j)
renders very simple expressions for the fields. However, this
approximation is only useful at very low frequencies (dashed lines
in Figure 3), and thereby, it cannot be used to obtain a time-domain
representation. In what follows, a high-contrast, thick-layer approx-
imation is used such that σ2∕σ1 ≪ jik1h2j. It is easy to see that a
threshold frequency applies; however, given a conductivity contrast,
a layer thickness can be always defined so that the solution holds to
lower frequencies. In this regime, α1;2 in equation B-2 can be lin-
earized, and thus, the equations for A and B simplify to

α1;2 ∼
1

h2

�
−
σ2
σ1

� ih2k1

�
1þ 1

2

σ22
ðσ1ih2k1Þ2

��
;

A ∼
σ1
2ik1

�
1þ σ2

σ1
ik1h2

�
;

B ∼ −
σ1
2ik1

�
1 −

σ2
σ1

ik1h2

�
. (B-3)

Furthermore, using a small argument approximation for the Bessel
functions (J0ðλnrÞ ∼ 1 and J1ðλnrÞ ∼ λnr∕2 after Abramowitz and
Stegun [1972]) and replacing equations. B-3 and B-2 into
equation B-1, the vertical component of the electric field yields

EðSÞ
z ¼ EðAÞ

z þ EðBÞ
z ;

EðAÞ
z ¼ Ids

4πσ1

�
π4σ42
8σ41

�X∞
n¼0

p3n
Cn − 1

�
ik1 þ σ1∕ðσ2h2Þ

ik1 þ σ2∕ðσ1h2ðCn − 1ÞÞ
�
ðik1Þ3e−ik1ðh−zÞCn ;

EðBÞ
z ¼ Ids

4πσ1

�
π4σ42
8σ41

�X∞
n¼0

p3n
Cn þ 1

�
ik1 − σ1∕ðσ2h2Þ

ik1 þ σ2∕ðσ1h2ðCn þ 1ÞÞ
�
ðik1Þ3e−ik1ðh−zÞCn ;

pn ¼ 2nþ 1;

Cn ¼
�
1þ p2nπ2σ2

4σ1

�
1∕2

. (B-4)

As shown in Figure 4a, the equation B-4 results in excellent
agreement with semianalytical estimates of the Bessel-Fourier
convolution integral, and thereby, it is suitable to obtain analytical
expressions for the time-domain response, assuming that the thick-
layer, high-contrast approximation holds.
The response of the layer to a step on excitation is given by the

inverse Laplace transform of EðA;BÞ
x ∕iω, as 1∕iω is the frequency

domain expression of the Heaviside step function. After some
algebra the inverse transforms

L−1
�

e−γs
1∕2

s1∕2 þ α

�
¼ e−γ

2∕4tffiffiffiffiffi
πt

p − αeαγþα2terf c

�
α

ffiffi
t

p þ γ

2
ffiffi
t

p
�
;

L−1
�
s1∕2e−γs

1∕2

s1∕2 þ α

�
¼ −

∂
∂γ

L−1
�

e−γs
1∕2

s1∕2 þ α

�
(B-5)

(Abramowitz and Stegun, 1972) will be needed, with the variable of
integration defined as s ¼ iω. The solution for eðAÞz ¼ L−1fEðAÞ

z ∕iωg
is then

eðAÞz ¼ Ids
4πσ1

�
π4σ42
8σ41

�X∞
n¼0

En

�
Fnffiffiffiffiffi
πt

p e−γ
2
n∕4t

− Gneαnγnþα2nterf c

�
αn

ffiffi
t

p þ γn
2

ffiffi
t

p
��

; (B-6)

Figure B-1. Integration paths around the resistive layer pole λ0, and
branch points k1 and k2. Figure B-2. Complex plane of λ of the modulated kernel.
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where

Fn ¼ ðμ0σ1Þ3∕2α2n
�
1 −

1

2α2nt
−

γn
4αnt

þ γ2n
4α2nt2

þ b

ðμ0σ1Þ1∕2
�

γn
2α2nt

−
1

αn

��
;

Gn ¼ ðμ0σ1Þ3∕2α3n
�
1 −

b

ðμ0σ1Þ1∕2αn

�
;

En ¼
p3n

Cn − 1
; (B-7)

with

αn ¼
1

ðμ0σ1Þ1∕2
σ2

σ1h2ðCn − 1Þ ;

γn ¼ ðμ0σ1Þ1∕2Cnðh − zÞ; and

b ¼ σ1
σ2h2

. (B-8)

The solution for eðBÞz ¼ L−1fEðBÞ
z ∕iωg is obtained from B-6 by re-

defining

αn ¼
1

ðμ0σ1Þ1∕2
σ2

σ1h2ðCn þ 1Þ ;

b ¼ −
σ1
σ2h2

; and

En ¼
p3n

Cn þ 1
. (B-9)

The total field is obtained by superimposing all of the contributions

ezðtÞ ¼ L−1
�
EðDÞ
z

iω

�
− L−1

�
EðIÞ
z

iω

�
þ L−1

�
EðAÞ
z

iω

�

þ L−1
�
EðBÞ
z

iω

�
; (B-10)

where the direct and image terms L−1fEðD;IÞ
z ∕iωg are (Ward and

Hohmann (1988), equation. 2.50)

eðD;IÞz ðtÞ ¼ Ids
4πσ1R3

���
4

π1∕2
θ3R3 þ 6

π1∕2
θR

�
e−θ

2R2 þ 3erf cðθRÞ
� ðΔzÞ2

R2

−
��

4

π1∕2
θ3R3 þ 2

π1∕2
θR

�
e−θ

2R2 þ erf cðθRÞ
��

;

θ ¼
�
μ0σ1
4t

�
1∕2

(B-11)

for a step on source time function, with R ¼ ðx2 þ ðΔzÞ2Þ1∕2,
and Δz ¼ zþ h, z − h for the source and image components,
respectively.

SOLUTION FOR A HED EXCITATION

In light of the analysis presented in the previous discussion, a
comparison with the mechanism giving rise to the horizontal
component of the fields due to a HED excitation is in order.
Consider first the expression (in equation 3) for the secondary

horizontal field of the TM mode

EðTMÞ
x ¼ Ids

4πσ1

Z∞

0

2

�
1 −

Z1

Z1 þ Ẑ2

�
u1e−u1ðh−zÞ

�
J1ðλrÞ

r
− λJ0ðλrÞ

�
dλ. (B-12)

Assuming that within the near offsets of interest the approximations
J1ðλrÞ ∼ λr∕2 and J0ðλrÞ ∼ 1 hold, then equation B-12 can be
rewritten as

EðTMÞ
x ¼ −

Ids
4πσ1

Z∞

0

u1λe−u1ðh−zÞdλþ
Ids
4πσ1

1

2

Z∞

0

�
2Z1

Z1 þ Ẑ2

λ3

u1

�

e−u1ðh−zÞ
�
1 −

k21
λ2

�
dλ. (B-13)

The first integral (namely, I1) can be evaluated exactly. Noticing that
u1 ¼ ðλ2 − k21Þ1∕2, such that u1du1 ¼ λdλ, and changing the integra-
tion variable to τ ¼ u1 − ik1, then the first term can be written as

IðTMÞ
1 ¼ −

Ids
4πσ1

Z∞

0

u1λe−u1ðh−zÞdλ

¼ −
Ids
4πσ1

e−ik1ðh−zÞ
Z∞

0

ðτ þ ik1Þ2e−ðh−zÞτdτ. (B-14)

The integration represents a Laplace type of transform to the
s ¼ ðh − zÞ domain, thereby using Laplace transform tables
(Abramowitz and Stegun, 1972)

IðTMÞ
1 ¼ −

Ids
4πσ1

e−ik1ðh−zÞ
�

2

ðh − zÞ3 þ
2ik1

ðh − zÞ2 −
k21

ðh − zÞ
�
;

(B-15)

which resembles that of themain image term (equation 14). In fact, as
frequency approaches DC, equation B-15 doubles the amplitude of
the image term, but in the opposite direction.
The second term

IðTMÞ
2 ¼ Ids

4πσ1

1

2

Z∞

0

�
2Z1

Z1 þ Ẑ2

λ3

u1

�
e−u1ðh−zÞ

�
1 −

k21
λ2

�
dλ

(B-16)

is analogous to the secondary fields, resulting from the VED
excitation, i.e., the last term in the first of equation 1, but weighted
by the factor 1 − k21∕λ2. Following the Kernel Modulation approach,
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the resulting expression for I2 is the same as that of equation B-4
(or equation B-6), but weighted by the factor 1 − k21∕λ2n, i.e.,

IðTMÞ
2 ¼ Ids

4πσ1
ð−2πiÞ k2

2

X∞
n¼0

�
Z1

Z1 þ Ẑ2

�
λ¼λn

λ3n
u1n

�
1 −

k21
λ2n

�
e−u1nðh−zÞ. (B-17)

The weighting factor in each term on the summation can be
written as

�
1 −

k21
λ2

�
λ¼λn

¼ 1þ 1

p2n

�
σ1
σ2

4

π2

�
(B-18)

in each term of the summation. In the late times, increasing values
of pn in the summation dominate, the weighting factor B-18 tends to
unity and the response approaches that of the VED excitation. In
other words, the late time behavior of the TM fields resembles that
of the fields due to EðSÞ

z .
Consider now the TE mode of the fields. Assuming that at close

source-receiver offsets J1ðλrÞ ∼ 1∕2λr holds, the expression of the
scattered fields (equation 4) simplifies to

EðTEÞ
x ¼ −

Ids
4πσ1

k21
iωμ0

Z∞

0

λ

Y1 þ Ŷ2

e−u1ðh−zÞdλ. (B-19)

Using equation A-37, the kernel of the integrand is written as

1

iμ0ω
1

Y1 þ Ŷ2

∼
1

2h2ðα2 − α1Þ
�
−
1þ α1h2
u1 − α1

þ 1þ α2h2
u1 − α2

�

α1;2 ¼
1

2h2

�
−1� ð1þ 2Δ2h22Þ1∕2

�
;

Δ2 ¼ k22 − k21; (B-20)

which yields

EðTEÞ
x ¼ −

Ids
4πσ1

k21
2h2ðα2 − α1Þ

�
−ð1þ α1h2Þ

Z∞

0

λ

u1 − α1
e−u1ðh−zÞdλ

þ ð1þ α2h2Þ
Z∞

0

λ

u1 − α2
e−u1ðh−zÞdλ

�
(B-21)

The two integrals are solved separately, as before, using the change
of variable τ ¼ u1 − ik1. To evaluate the first term, notice that
jα1j ≪ jik1j if jik1h2j ≪ 2, i.e., for wavelengths longer than h2,
those driving the late time behavior of the fields. In this case,

IðTEÞ1 ¼
Z∞

0

λ

u1 − α1
e−u1ðh−zÞdλ ∼ e−ik1ðh−zÞ

Z∞

0

e−τðh−zÞdτ

¼ e−ik1ðh−zÞ

ðh − zÞ . (B-22)

To evaluate the second term, the same change of variable is imple-
mented. In this case, it is noticed that j − α2 þ ik1j ≫ τ, within the
range of τ of dominant contribution to the integrand. In this case,

IðTEÞ2 ¼
Z∞

0

λ

u1 − α2
e−u1ðh−zÞdλ

∼
e−ik1ðh−zÞ

ð−α2 þ ik1Þ2
Z∞

0

½τ2 þ τð−α2 þ 2ik1Þ

þ ik1ð−α2 þ ik1Þ�e−τðh−zÞdτ

¼ e−ik1ðh−zÞ

ð−α2 þ ik1Þ2
�

2

ðh − zÞ3 þ
ð−α2 þ 2ik1Þ

ðh − zÞ2

þ ik1ð−α2 þ ik1Þ
ðh − zÞ

�
. (B-23)

The final expression for the fields is then obtained by replacing
equations B-22 and B-23 in equation B-21. Further simplification
is attained by noticing to a good approximation that α2 ∼ −1∕h2,
1þ α2 ∼ Δ2h22 and α1 ∼ 0, and that Δ2 ∼ −k21 when a strong con-
ductivity contrast applies. In this case,

EðTEÞ
x ¼ −

Ids
4πσ1

k21
2α2h2

e−ik1ðh−zÞ þ Ids
4πσ1

k41h
4
2

2
e−ik1ðh−zÞ

�
2

ðh − zÞ3 þ
1

h2ðh − zÞ2 þ
ik1

h2ðh − zÞ
�
; (B-24)

where the first and second terms are obtained from IðTEÞ1 and IðTEÞ2 ,
respectively. Inspection indicates that the first term dominates, and
furthermore, the product jα2h2j ∼ 1 and thereby the TE mode has
but negligible dependence on the layer parameters. Furthermore, the
linear dependence in k21 indicates that as the frequency vanishes (or
at very late times) so does the TE component of the field, which
represents the inductive character of this mode.
To test the accuracy of the expressions described above, the solu-

tions represented by equation B-24 for the TE mode, and the super-
position of equations B-15 and B-17 for the TM mode is compared
with the semianalytical evaluation of the integrals in Figure 6. The
agreement is evident (see symbols compared to lines).
Time-domain expressions are obtained as before, assuming a step

on source time function, i.e., a ðiωÞ−1 weight is multiplied to each of
the equations in 25, and suitable inverse Laplace transforms are
performed:

exðtÞ ¼ L−1
�
EðDÞ
x

iω

�
− L−1

�
EðIÞ
x

iω

�
þ L−1

�
EðTEÞ
x

iω

�

þ L−1
�
EðTMÞ
x

iω

�
. (B-25)

The direct and main image components are available in Ward and
Hohmann (1988) (equation 2.50) which yields
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eðDÞx ¼ Ids
4πσ1

2

r3

�
2θr

π1∕2
e−θ

2r2 − erf cðθrÞ
�
;

θ ¼
�
μ0σ1
4t

�
1∕2

B-26

for the direct term and

eðIÞx ¼ Ids
4πσ1

1

ðh − zÞ3
��

4θ3ðh − zÞ3
π1∕2

þ 2θðh − zÞ
π1∕2

�
e−θ

2ðh−zÞ2

þ erf cðθðh − zÞÞ
�

(B-27)

for image term, assuming that the radial distance r ≪ ðh − zÞ. The
inverse Laplace’s transform of the TE field (EðTEÞ

x ) yields,

eðTEÞx ¼ −
Ids
4πσ1

1

ðh − zÞ3
�
2θ3ðh − zÞ3

π1∕2

�
e−θ

2ðh−zÞ2 ; (B-28)

whereas the transform of the TM field (EðTMÞ
x ) provides

eðTMÞ
x ¼ Ids

4πσ1

1

ðh − zÞ3
��

4θ3ðh − zÞ3
π1∕2

þ 4θðh − zÞ
π1∕2

�

e−θ
2ðh−zÞ2 þ 2erf cðθðh − zÞÞ

�
þ eðTMSÞ

x ðtÞ; (B-29)

where the secondary layer response term eðTMSÞ
x ðtÞ is the Laplace’s

transform of EðTMSÞ
x in equation 25. A suitable expression for

eðTMSÞ
x ðtÞ can be readily obtained by computing the transform of
each harmonic in equation B-17. As noted before, equation B-17
is a weighted version of the solution for Ez due to a VED in equa-
tion B-1. Therefore, the time-domain expression of the field due to
the HED is the same as that describing eðA;BÞz ðtÞ in equation B-6,
weighted accordingly by the factor (equation B-18).
To check the validity of the solution, an expression for the scat-

tered field is obtained by superimposing the components in equa-
tions B-27, B-28, and B-29, which is subtracted from its asymptotic
late time limit to render the step off transient behavior:

eðSCÞx ¼ ðeIx þ eTMx þ eTEx Þt→∞ − ðeIx þ eTMx þ eTEx Þ;

eðSCÞx ¼ −
Ids
4πσ1

1

ðh − zÞ3
�
1 −

�
2θ3ðh − zÞ3

π1∕2
þ 2θðh − zÞ

π1∕2

�

e−θ
2ðh−zÞ2 − erf cðθðh − zÞÞ

�
− eðTMSÞ

x ðtÞ. (B-30)

Figure 7a shows the agreement between semianalytical estimates of
the scattered fields (symbols) and the analytical eqation B-30, and
the individual components of the solution for the scattered field are
shown in Figure 7b.

SUPERPOSITION OF IMAGES

At this point, the kernel modulation expressions (equation B-4
for the VED and equation B-17 for the HED) provide a solution
for the fields describing a superposition of an infinite series of
harmonics, which agree to a great degree with the semianalytical

evaluation of the integrals. However, further analysis is required
to interpret them in light of the structure of the fields in the
near-offset regime. In other words, it is not evident that
equations B-4 or B-17 represent the concept of a superposition
of images described by the asymptotic solutions. In what follows,
equation B-4 (the same analysis applies for equation B-17) is inter-
preted by analyzing its behavior at the 0th order, as well as in the
limit as n → ∞.
Consider first n ¼ 0, such that pn ¼ 1 and Cn → 1. Notice that

Cn ∼ 1 as long as σ2∕σ1 ≪ ðπpn∕2Þ2, and thereby, the simplifica-
tions that follow can be done for higher harmonics as well. After
some simple algebra, the 0th harmonic of the total field

(EðSÞ
z ¼ EðAÞ

z þ EðBÞ
z ) can be written as

EðSÞ
z ¼ Ids

4πσ1

�
π4σ42
8σ41

�
ðik1Þ3

�
1

2
−
σ1
σ2

�
1

2ik1h2
− ik1h2

�

þ
�
σ1
σ2

�
2
�
e−ik1ðh−zÞ. (B-31)

In the previous section, it was shown that the asymptotic expres-
sions were accurate in as much as jik1ðh − zÞj ≫ 1. Thus, let us
assume that ik1ðh − zÞ ∼ Oð1Þ, i.e., the 0th order, is most important
for those wavelengths on the order of the distance to the layer. For
higher frequencies, the exponential decay dominates, whereas for
lower frequencies (even longer wavelengths), the ðik1Þ3 dominates;
in either case, the field decreases. Under this assumption, it is
justified to replace ik1 ∼ ðh − zÞ−1, and thereby equation B-31
simplifies to

EðSÞ
z ∼

Ids
4πσ1

π4

16

�
σ2
σ1

�
2 e−ik1ðh−zÞ

ðh − zÞ3 2
�
1þ ik1h2

σ2
σ1

�
. (B-32)

This expression represents the dipolar character of an image source

at near offsets, similar to that described by EðSÞ
z in equation 9.

Consider now the upper limit, i.e., n → ∞. In this scenario, let us
assume that for some value of n > n0,

pn > p0 ¼ 2n0 þ 1; Cn →
pnπ
4

�
σ2
σ1

�
1∕2

. (B-33)

In this case, the secondary field can be written as

EðSÞ
z ∼

Ids
4πσ1

�
πσ2
2σ1

�
4 π

4

�
σ2
σ1

�
1∕2

ðik1Þ3
X∞
n¼n0

p2ne−iαpnΔpn;

(B-34)

where

α ¼ k1ðh − zÞ π
4

�
σ2
σ1

�
1∕2

. (B-35)

In equation B-34, the Δpn factor in the summation has been arbi-
trarily introduced for convenience, as in fact Δpn ¼ 2 exactly, and it
represents the difference between two consecutive values of pn.
However, noticing that the summation is the discrete representation
of and integration in pn, it is justified to define the limiting behavior
of the summation by
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X∞
n¼n0

p2ne−iαpnΔpn →
Z

∞

p0

p2e−iαpdp; (B-36)

where p replaces pn to shorten the nomenclature.
Evaluating the integral yields the limiting expression

lim
n→∞

EðSÞ
z ∼ −

Ids
4πσ1

π2
�
σ2
σ1

�
3 e−i

p0π
4
k2ðh−zÞ

ðh − zÞ3 2

�
1þ p0π

4
ik2ðh − zÞ

þ ðp0πÞ2
32

ðik2ðh − zÞÞ2
�
; (B-37)

which also represents the dipolar character of an image source at
near offsets, such as that described by EðIÞ

z in equation 9. Most im-
portantly, the ik2ðh − zÞ dependence observed in equation B-37 is
indicative of an image source in a whole-space medium with the
properties of the layer (σ2), which is related to the charges induced
in the lower boundary by the fields due to the charges in the upper
boundary.
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