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ABSTRACT

Bayesian methods can quantify the model uncertainty that is
inherent in inversion of highly nonlinear geophysical problems.
In this approach, a model likelihood function based on knowl-
edge of the data noise statistics is used to sample the posterior
model distribution, which conveys information on the resolv-
ability of the model parameters. Because these distributions
are multidimensional and nonlinear, we used Markov chain
Monte Carlo methods for highly efficient sampling. Because
a single Markov chain can become stuck in a local probability
mode, we run various randomized Markov chains independ-
ently. To some extent, this problem can be mitigated by running
independent Markov chains, but unless a very large number of
chains are run, biased results may be obtained. We got around
these limitations by running parallel, interacting Markov chains

with “annealed” or “tempered” likelihoods, which enable the
whole system of chains to effectively escape local probability
maxima. We tested this approach using a transdimensional al-
gorithm, where the number of model parameters as well as the
parameters themselves were treated as unknowns during the in-
version. This gave us a measure of uncertainty that was inde-
pendent of any particular parameterization. We then subset
the ensemble of inversion models to either reduce uncertainty
based on a priori constraints or to examine the probability of
various geologic scenarios. We demonstrated our algorithms’
fast convergence to the posterior model distribution with a
synthetic 1D marine controlled-source electromagnetic data ex-
ample. The speed up gained from this new approach will facili-
tate the practical implementation of future 2D and 3D Bayesian
inversions, where the cost of each forward evaluation is signifi-
cantly more expensive than for the 1D case.

INTRODUCTION

Marine controlled-source electromagnetic (CSEM) methods have
been used to image geology with highly resistive contrasts for more
than three decades (Young and Cox, 1981). Extensive research and
commercialization of this technology over the last 10 years (Ellings-
rud et al., 2002; Constable, 2010) has led to its being added to the
staple suite of seismic methods as an exploration tool. Owing to the
fact that electromagnetic skin depths are smaller in conductive me-
dia, marine geophysical EM methods almost always operate in the
lower frequency quasistatic regime. This allows for deeper penetra-
tion of the CSEM fields into the earth, but as a consequence, it is
more a diffusive process than wave-like (Loseth et al., 2006). Thus,
the resolution of CSEM is never quite as good at depth as that of
the seismic method, but the value of CSEM lies in its sensitivity to

resistivity (which may be indicative of hydrocarbon saturation), and
not acoustic impedance (which may be more indicative of geologic
structure). Owing to this diffusive characteristic of marine CSEM,
robust inferences made from a survey are necessarily from inversion
of the data, and not merely from examination of the data itself
(Weiss, 2007). Typically, regularized and linearized gradient based
inversion methods have been used to arrive at models that in
addition to minimizing data misfit are “optimal” in some user-
defined sense. By means of regularization, highly oscillatory fea-
tures in the model that are thought to be outside the resolution
of CSEM are eliminated (e.g., Constable et al., 1987; Newman
and Alumbaugh, 2000; Abubakar et al., 2008; Key, 2009; Sasaki,
2013). Though these methods are highly efficient and well under-
stood, they provide only a single smooth model as a result, or a suite
of smooth models. These models provide a limited insight into the
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various classes of models that are compatible with the observed data
given the noise. A clear understanding of the resolvability of various
parts of the model space does not emerge from a linearized treat-
ment of the nonlinear CSEM problem.
To quantify the uncertainty inherent in the inversion of CSEM

data, one can use a Bayesian framework where all information is
stored in probability density functions (PDFs). Because Bayesian
probability (Bayes and Price, 1763) is a measure of information
(Scales and Sneider, 1997) and because it is the aim of geophysical
inversion to provide information about the earth’s subsurface, it is
natural to postulate geophysical inverse problems in a Bayesian
framework (Tarantola and Valette, 1982). In such a framework,
model parameters are treated as random variables, and their fit
to the observed data given the observed statistical noise allow
one to formulate a model likelihood. To make the connection with
deterministic inversion methods, to the first order, models with low
misfit possess a higher likelihood. After incorporating prior knowl-
edge of the models independent of the data, the product of the prior
model probability and the likelihood is known as the posterior
model probability. Those parts of the model space that are more
frequently required by the data than other parts manifest with
greater posterior probability, and hence they are better resolved
(Backus, 1988). However, fixing a particular model parameteriza-
tion (e.g., fixing the number of layers, their thickness, and locations)
for the inversion is known to produce posterior distributions, only
for the given parametrization (Dettmer et al., 2010). This is where
the “transdimensional” (Bodin and Sambridge, 2009) or “reversible
jump” (Green, 1995) Markov chain Monte Carlo (RJ-MCMC) dif-
fers from traditional MCMC methods, in sampling from a posterior
distribution where the number of unknowns and their positions
are also treated as part of the inverse problem (Agostinetti and
Malinverno, 2010). Such algorithms have a “parsimony” property
(Malinverno, 2002), which refers to the fact that Bayes’s theorem
deems models that explain the data with simpler parameterizations
more probable. MacKay (2003) discusses this aspect of Bayes’s
theorem in some detail. A good introduction to geophysical trans-
dimensional Bayesian inversion can be found in Sambridge
et al. (2013).
Parallel tempering is an accelerated MCMC technique sometimes

known as “replica exchange” (Swendsen and Wang, 1987; Geyer,
1991; Earl and Deem, 2005). Using a sequence of parallel, inter-
acting MCMC chains with “annealed” or “tempered” likelihoods
allows the entire system of chains to effectively sample the model
space without getting trapped in local modes of posterior probabil-
ity. Recent examples of parallel tempering as applied to geophysical
inversion can be found in Dosso et al. (2012), who use the method
to discover multiple modes in the posterior model distribution while
inverting underwater acoustic reverberation data and in Dettmer and
Dosso (2012), who use underwater acoustic data to invert for sea-
floor sediment properties.
Bayesian uncertainty estimation for the CSEM problem has in-

deed been carried out in the past (e.g., Chen et al., 2007; Trainor-
Guitton and Hoversten, 2011; Buland and Kolbjornsen, 2012).
However, these methods considered the model parameterization
to be fixed and did not address the model space at different scales.
Tompkins et al. (2011) consider a scheme that does indeed address
the issue of model parameterization at different scales, but their
method is not Bayesian and requires the use of a starting model
that fits the data well, and the resulting uncertainty retains some

of the characteristics of this model. Gunning et al. (2010) use a
“Bayesianized” hierarchical bootstrapping method to address the
issue of model resolvability and escape from local probability
maxima.
The advantage in using a transdimensional approach (Bodin and

Sambridge, 2009) is that the theoretical framework and the practical
implementation of it are straightforward — as explicitly shown in
Ray and Key (2012), nothing more than a literal interpretation of
Bayes’s theorem (Bayes and Price, 1763), and the generation of
random numbers is required to explore a realistic posterior model
distribution. Recent applications of the transdimensional method to
solve geophysical EM methods can be found in Minsley (2011) and
Brodie and Sambridge (2012), who applied it the airborne EM prob-
lem, and in Ray and Key (2012), who tackle the marine CSEM
problem. We extend the application of RJ-MCMC to CSEM by
introducing parallel tempering, to hasten convergence of the RJ-
MCMC chains and quickly escape local probability maxima. By
using parallel tempering, we show that previously undetected
modes in the posterior model distributions for CSEM data have
come to light and that the total number of forward solves is reduced
to less than half the number required without using it. This is sig-
nificant because a realistic uncertainty appraisal for 2D CSEM data
will require fast, efficient, and accurate sampling because 2D or 3D
EM problems (Key and Ovall, 2011) are computationally far more
expensive with complicated interactions between model parameters.
We demonstrate our concept using synthetic 1D data, and we add
RJ-MCMC and parallel tempering to an arsenal of tools for tackling
2D or 3D problems in the future. Last, we use the reversible jump or
transdimensional method to provide a workflow for testing geologic
hypotheses by subsetting the posterior distribution of inverted
models by interrogating it with intelligent queries, without requiring
further inversion. We see this as being particularly useful in explo-
ration scenarios where new information keeps coming in over time,
which can be used to hone the posterior model distribution without
reinverting the acquired data.

THEORY

Bayesian inversion, Markov chains and the
reversible jump

Bayesian information is contained in PDFs represented by pð·Þ.
Using Bayes’s theorem (Bayes and Price, 1763), we write

pðmjdÞ ¼ pðmjdÞ × pðmÞ
pðdÞ ; (1)

posterior ¼ likelihood × prior assumptions

evidence
: (2)

For Bayesian geophysical inversion, the data vector d is a con-
stant. All PDFs with a model dependence are functions of the ran-
dom variable m. The term pðdjmÞ can then be interpreted as the
model likelihood, the functional form of which depends on the sta-
tistics of the noise distribution, and the value of which depends on
the model m being sampled and its misfit. For Gaussian noise, the
model likelihood is given as
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pðdjmÞ ∝ exp

�
−
½d − fðmÞ�TCd

−1½d − fðmÞ�
2

�
: (3)

Here, fðmÞ corresponds to the modeled data and C−1
d is the data

covariance matrix, and ½d − fðmÞ�TCd
−1½d − fðmÞ� is the χ2 misfit

for the evaluated model m. The prior model distribution pðmÞ rep-
resents our state of knowledge independent of the survey data. The
evidence term pðdÞ corresponds to a constant PDF normalizing fac-
tor equal to the integral over all models of the numerator in equa-
tion 1. Though the evidence can help in “model selection,” i.e.,
decide which model parameterization is more probable than the
other, it is very challenging to compute because it requires evalu-
ation of a multidimensional integral over different models, evalu-
ated for different model parameterizations. Another means of
performing model selection is to calculate the full posterior model
probability distribution pðmjdÞ by allowing the problem to be trans-
dimensional (Dettmer et al., 2010), i.e., have a varying number of
model parameters. This is the RJ-MCMC approach that we have
used in this paper, which is different from the usual MCMC ap-
proach in the following manner. Treating the evidence as a propor-
tionality constant, it follows from equation 1 that

pðmjdÞ ∝ pðdjmÞ × pðmÞ; (4)

pðmjdÞ ∝ pðdjmÞ × pðmkjkÞ × pðkÞ: (5)

What we have effectively done is not claimed to have known the
optimal model parameterization a priori in equation 4. We have not
fixed the prior model probability to be a constant over all models,
which fixed-dimensional MCMC samplers do. We do not regularize
our inversion because we do not know what an optimal regulariza-
tion that preserves resolution yet removes spurious oscillatory
behavior is. Similarly, we simply do not know how many layers
to represent the earth with, or what their locations are (Bodin
and Sambridge, 2009). For a given model m, we split pðmÞ into
two parts. One part contains information about the number of in-
terfaces k in the model, pðkÞ. The other part pðmkjkÞ contains in-
formation about where these interfaces are in depth, and what the
resistivities in between these layers the top and bottom half-space,
are given the number of interfaces k. Our task is to evaluate uncer-
tainty in the models inverted from the observed data. To this end, we
must arrive at the posterior distribution of models, most of which fit
the data well, by evaluating their misfit and sampling models ac-
cording to equation 5. However, it is nearly impossible to exhaus-
tively sample the model space for more than a few parameters
owing to the “curse of dimensionality”; hence, we resort to probing
this highly nonlinear distribution using various MCMC methods
(e.g., Liang et al., 2010) and focus on the RJ-MCMC or transdimen-
sional method (Sambridge et al., 2013) in this work.

Metropolis-Hastings MCMC and
the acceptance probability

The RJ-MCMC sampler is a particular type of Metropolis-
Hastings (MH) sampler (e.g., Hastings, 1970; Liang et al.,
2010). A MCMC sampler such as the MH algorithm converges
upon the posterior distribution using an acceptance probability α.
At every step of the Markov chain, a candidate model is sampled
by perturbing the current model using a known probability distri-

bution (the proposal distribution q) and the acceptance α is calcu-
lated. The proposal distribution q is usually a simple distribution
which should be easy to draw samples from (such as a Gaussian),
and also be scaled somewhat like the posterior distribution we are
sampling (Ray and Key, 2012). A random number r is then drawn
uniformly from the interval ½0; 1�. If r < α, then the proposed per-
turbation is accepted, else the old model is retained. The rationale
behind this algorithm can be explained by examining in more detail
the expression for α (Bodin and Sambridge, 2009), where

αðm 0jmÞ ¼ min

�
1;
pðm 0Þ
pðmÞ ×

pðdjm 0Þ
pðdjmÞ ×

qðmjm 0Þ
qðm 0jmÞ × jJj

�
:

(6)

Here, m 0 is the new proposed model and m is the old model.
Specifically, pðm 0Þ

pðmÞ is the prior ratio, pðdjm 0Þ
pðdjmÞ is the likelihood ratio,

and qðmjm 0Þ
qðm 0 jmÞ is the proposal ratio. The Jacobian term jJj is not to

be confused with the model Jacobian needed for gradient-based in-
versions (e.g., Constable et al., 1987), but it is a matrix that incor-
porates changes in model dimension when moving from m to m 0.
For a fixed number of dimensions in a classic MH algorithm, the
prior ratio (for uniform priors), proposal ratio (for symmetric pro-
posals), and Jacobian term are all one (Dettmer et al., 2010). Hence,
the algorithm always moves toward areas of higher posterior prob-
ability if the data misfit improves (likelihood ratio greater than one).
However, it can also move to areas of lower posterior probability
with a probability α if the misfit does not improve (likelihood ratio
less than one). This is essentially how MCMC samplers give us
“regional” as opposed to “point” information about models that
fit the data well, unlike gradient-based optimizers. Extensive details
on the transdimensional RJ-MCMC prior and proposal ratios can be
found in Bodin and Sambridge (2009), Dettmer et al. (2010), or Ray
and Key (2012).
To be able to compare likelihoods between models with different

numbers of parameters (i.e., with different dimensions), the Jaco-
bian in the acceptance term in equation 6 needs to be evaluated.
There are various implementations of RJ-MCMC, and in all the
examples cited so far, a “birth-death” scheme has been used. As
shown in Bodin and Sambridge (2009) for the birth-death RJ-
MCMC scheme, this Jacobian term is unity. We have adopted
the birth-death algorithm in this paper and shall not concern our-
selves with this Jacobian term any further.
As to why the algorithm should not always look to improve the

data fit by simply increasing the number of parameters (interfaces in
the seabed), if we examine equation 6, we find that even if the like-
lihood ratio times the proposal ratio is greater than one for a pro-
posed move that inserts a new interface into the model, the prior
ratio will be less than one owing to the fact that the new prior
PDF pðm 0Þ needs to integrate over a larger number of parameters
to equal one. Hence, there is an opposition to the “birth” of a new
layer (which may lead to improvement of data fit) by the prior ratio.

Parallel tempering

If one were to examine the likelihood function for Gaussian noise
in equation 3, it is apparent that the “peakiness” of the likelihood
function can be manipulated if one were to introduce a term that
plays the statistical mechanics analog of temperature in a partition
function (Earl and Deem, 2005). Detailed balance is an aspect of
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MCMC that enables unbiased sampling, allowing samples to be
distributed in proportion to the target posterior PDF. If we can
“anneal” or “temper” the likelihood, without violating the detailed
balance (Earl and Deem, 2005), then local probability maxima in
the posterior can be overcome. That is, if we were to say that our
annealed likelihood should be

pðdjmÞ ∝ exp

�
−
½d − fðmÞ�TCd

−1½d − fðmÞ�
2Tj

�
; (7)

instead of the untempered version with Tj ¼ 1, we would be sam-
pling from a smoother likelihood with less extreme peaks and val-
leys than the target untempered likelihood. The first examples of
accomplishing this without violating detailed balance can be found
in Swendsen and Wang (1987) and in its more familiar form as a
MCMC sampling algorithm in Geyer (1991). The basic idea is to
run N parallel Markov chains in concert, with the jth chain at tem-
perature Tj, with T1 ¼ 1 and Tj > 1; ∀j > 1. Temperatures are
usually arranged in ascending order, with Markov chains at adjacent
temperatures being allowed to exchange their states (models) with a
fixed probability or over a fixed number of steps. At the end of this
joint simulation of N Markov chains, the target chain at T1 ¼ 1 is
used for posterior inference. An effective implementation is to have
a temperature ladder of increasing temperatures, as is demonstrated
in Figure 1. This figure describes how the likelihood function can be
annealed as a consequence of using equation 7. Note how the like-
lihoods corresponding to higher temperature chains sample higher
values of χ2 misfit over a broader range of probable likelihoods.
Thus, these chains are never stuck in local probability maxima. Ow-
ing to their overlap with the narrower lower temperature chains,
exchange of states (models) for adjacent chains is possible using
the following MH acceptance criterion:

αswap ¼
photðdjmcoldÞ
photðdjmhotÞ

×
pcoldðdjmhotÞ
pcoldðdjmcoldÞ

: (8)

It is important to ensure that while using equation 8 the proba-
bility of selecting all pairs of temperatures is equal and that the pairs
are chosen at random to maintain detailed balance (Dettmer and
Dosso, 2012). Further, to ensure that one has configured a reason-
able temperature ladder, accepted exchange rates between adjacent

temperatures should be close to 25% (Dosso et al., 2012). The high-
est temperature should be high enough to allow the chain to escape
local probability maxima, yet not so high for there to be no signifi-
cant overlap between adjacent chains, which will make exchanges
of information improbable. For a given model space, adding more
chains to the configuration once an optimal exchange acceptance
rate is found does not improve chain mixing. A detailed discussion
on setting the temperature ladder can be found in Earl and
Deem (2005).
The main motivation for using parallel tempering is that it is very

efficient at escaping local probability modes (misfit minima) and the
communication between adjacent chains significantly speeds up
convergence to the posterior solution. This is an important factor
in ultimately carrying out 2D inversion of CSEM data, where
the computational complexity in forward model evaluation is far
greater. One can escape local posterior probability modes by run-
ning lots of independent chains at the target temperature (Dettmer
et al., 2010; Bodin et al., 2012; Ray and Key, 2012), but for a 2D
problem where the evaluation of any one forward model itself can at
present take up the resources of a cluster of computers, it is impor-
tant to keep the number of parallel chains small. Parallel tempering
achieves just this, bringing down the total number of evaluations as
the number of communicating parallel chains required is small, a
fact we demonstrate in this paper.

SYNTHETIC INVERSION TESTS

As a test model for the algorithm, we use a 1D model already
studied by Trainor and Hoversten (2009) and Tompkins et al.
(2011). The model, as well as its phase and amplitude response
are shown in Figure 2. This model is chosen for study by Trainor
and Hoversten (2009) owing to a frustrating lack of well-defined
convergence to a posterior distribution. Gaussian noise of 2%
was added to the modeled data, and a standard source normalized
amplitude of 10−15 V∕Am2 was used as the noise floor.

Interface depths exactly fixed

In the first suite of tests, using the guidelines mentioned for tem-
perature selection, we applied parallel tempering using four chains
at temperatures T ¼ ½1.00; 1.35; 1.84; 2.50�. Note that the temper-
atures are equally spaced in the log domain (Dettmer and Dosso,
2012). We used an ordinary MH algorithm without the reversible
jump for our initial studies. Using 30,000 samples per chain, with
swaps attempted at every step, dismissing the first 3000 as the
“burn-in” samples (low-probability, high-misfit region of model
space), the results from the target chain at T ¼ 1 are shown in
Figure 3a, with the truth being shown in each layer by a red vertical
line at the correct resistivity value. The vertical axis for all plots
corresponds to the probability of resistivity in the given layer.
The displayed marginal probabilities are simply obtained by bin-
ning the sampled posterior model resistivities at each depth. The
same histograms for each layer, translated into depth and the
log10-resistivity domain are displayed as an image in Figure 3b.
Hotter colors represent higher probability, and cooler colors corre-
spond to lower probability. The plots look far more natural in the log
domain, which is more representative of subsurface resistivity than
its linear counterpart. The true model is shown with a dotted yellow-
black 1D model. Though we have exactly fixed the model interfaces
to be at the true layer depths, we get a somewhat surprising result. In

Figure 1. Annealed or tempered likelihood functions as a function
of their χ2 misfit. Note how the leftmost likelihood function at T ¼
1 is narrow and peaked, which can manifest as a model space which
is harder to sample.
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addition to the probable layer resistivities being clustered near the
truth (as we expected), in layers 3 and 4, we get log10 resistivities
clustered around 0.05 and 0.32 that are less probable than the maxi-
mum probable in the layer, but are not negligible (which we did not
expect). They have a slightly higher misfit and as expected from the
likelihood formulation 3, a lower probability. However, they re-
present models that are within the data error. Root-mean-square
(rms) misfit values are obtained by dividing the χ2 misfit by the
number of data points and taking the square root. Models that be-
long to the “true” family of models have an rms misfit close to 0.9,
whereas those models belonging to the “shadow” family of models
have an rms closer to 1.1. Further, in carrying out untempered fixed-
dimensional inversions, we always chanced upon one or the other
family of models. In 10 independent fixed-dimensional trials, only
two converged upon the true family. However,
from Figure 3a and 3b it is apparent that the true
family of models is more probable. Thus, we
would probably have needed many more Markov
chains running independently to obtain the true
posterior probabilities of the two classes of mod-
els compatible with the data. In fact, though the
results of Trainor and Hoversten (2009) and
Tompkins et al. (2011) are generally compatible,
albeit with certain distinct differences, neither of
them show any hint of the shadow family of
models in their posterior distributions. The fact
that separate modes in a difficult probability
landscape exist is not new, and it is the reason
why parallel tempering is used in various sam-
pling applications in the first place. We verified
the existence of these distinct modes by comput-
ing a 5D grid searched posterior over the prob-
able search ranges indicated by Figure 3b.
Though the resulting grid was coarse (not shown
here), it required 15 × 15 × 30 × 30 × 20 ¼
4;050;000 evaluations to prove the existence
of separate modes. In contrast, with parallel
tempering and MCMC, we needed only
4 × 30,000 = 120,000 samples in total. This is a major reason
why high-dimensional integrals (such as those required for marginal
probability distributions) are computed using stochastic methods
instead of a brute-force approach. Geophysical evidence of multiple
modes in the model space has been amply demonstrated by Dosso
et al. (2012) for geoacoustic inversion, and by Gunning et al. (2010)
for the case of Bayesianized CSEM inversion. What is perhaps
a little surprising is that as simple a model as the one we
have studied, demonstrates such nonuniqueness with exact layer
parameterization.

Transdimensional inversion with parallel tempering

Given that we don’t always know the exact layer parameteriza-
tion required to perform an inversion, we elected to perform a
transdimensional inversion with the noisy synthetic data. The
number of interfaces is allowed to vary from one to 15, and the
interfaces can be placed anywhere between 1002 and 3500 m.
Models are allowed to have any log10 resistivities between −1
and 2.3 (0.1 to 200 linear ohm-m). In this section, we also applied
parallel tempering to the RJ-MCMC framework. A remarkable as-
pect of most MCMC algorithms is their flexibility, which allowed

us to run a transdimensional RJ-MCMC algorithm within a paral-
lel tempering framework with very little modification to either set
of codes.

Effect of different temperatures

For the RJ-MCMC application, we used eight different temper-
atures at T ¼ ½1.00; 1.14; 1.30; 1.48; 1.69; 1.92; 2.19; 2.50� and
swapped randomly between two chains at every single step. For
flexible model parameterization, eight chains were used as opposed
to the four used earlier for fixed-dimensional MCMC. This is be-
cause we now have a different and larger posterior model probabil-
ity space to sample. The results are shown in Figure 4a, where each
row corresponds to the indicated temperature. The left panels show

Figure 2. Synthetic 1D model (red) used for this study. Alternating, moderately resis-
tive, then conductive sediments are terminated by a highly resistive basement at depth.
The CSEM amplitude and phase responses at the seafloor receivers are plotted with
range at three frequencies. The background responses in the absence of the middle layer
(black model) are shown with dashed gray lines.

Figure 3. (a) Marginal resistivity distributions in each layer for a
fixed-dimensional inversion. The truth is shown with a red vertical
line. (b) Same as (a) except now higher probabilities are shown in
hotter colors, and the resistivity scale is in log10 ohm-m. The true
model is shown with a dotted yellow-black line.
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probability of resistivity at depth, and the right panels show the
probability of the presence of interfaces at depth. At each depth
in the left panels, the 5% and 95% quantile lines of resistivity have
been indicated with a dashed black line, and the truth is indicated
with a solid black line. The dotted vertical line in the right panel
corresponds to a uniform probability of interfaces between 1002
and 3500 m. As shown in Figure 1, the hotter temperature chains
sample higher χ2 misfit values. Returning to Figure 4a, clearly, the
hotter chains are not able to resolve well the middle log10 resistivity
of 0.69 (5 ohm-m linear), preferring to be closer to the shadow value
of log10 resistivity of 0.05 (1.12 ohm-m linear) with smoother pos-
terior model ensembles. As we progress downward toward the
cooler chains, we see sensitivity to the true value of the middle
layer, though it is not uniquely resolved. This is in line with the
observations of both Gunning et al. (2010) and Bodin et al.
(2012) who explicitly state that larger data errors than actually ob-
served in the data will lead to less structure (smoother model en-
sembles) in the inferred posterior. Because increasing the data
errors for inversion is in some sense, increasing the temperature

in the annealed likelihood, the two statements are equivalent. Thus,
the higher temperature chains should be less sensitive to the middle
layer, which is indeed what we observe in this study.
Looking at the target chain at T ¼ 1, at some depths, the truth is

in fact less probable than the shadow value. Given the results of our
fixed-dimensional modeling, this should not come as a surprise. In
this light, the result is also fairly intuitive: When we allow the layer
parameterization to be variable, we are looking at a more realistic
uncertainty estimate which should clearly be less certain than if we
had fixed the interfaces to be at their true positions. Without more
information, this is all the subsurface information content that we
can glean from the observed data, within the relatively large prior
bounds. In the following section, we deal with trying to reduce this
uncertainty, a posteriori.

Sample reweighting

We can also reweight the chains from different temperatures to
obtain samples at the target temperature of T ¼ 1 using a weighting
factor (Brooks and Neil Frazer, 2005; Dosso et al., 2012). For mj

i ,
which is the ith model in a chain at temperature Tj with a sampled
misfit χ2ðmj

i Þ, the weight is given as

wðmj
i Þ ¼

exp

�
− χ2ðmj

i Þ
2

�
1 − 1

Tj

��

P
i
exp

�
− χ2ðmj

i Þ
2

�
1 − 1

Tj

�� : (9)

Notice that at a higher temperature, a higher misfit implies a
smaller weight. Further, the weight for all models in a chain are
the same if Tj ¼ 1, implying no reweighting. For all models in
a chain at a particular temperature, the samples can be reweighted
to the target temperature T ¼ 1 using equation 9. For instance, mar-
ginal probabilities of resistivity at depth can be found by binning the
resistivity values as before, but each histogram count needs to be
multiplied by the weight corresponding to the model being binned.
The results of this operation are shown in Figure 4b, where each row
corresponds to the reweighted samples at a given temperature. The
color scales are the same for all images in Figure 4a and 4b. All
reweighted distributions look fairly similar, but reweighted samples
from T ¼ 2.5 have a slightly rougher posterior distribution —
borne out by a minute observation of the interface probability curve
at this temperature in Figure 4b and comparison with the interface
probability curve for the T ¼ 1 case. The T ¼ 2.5 chain has under-
sampled the model space to a very small extent, a similar observa-
tion being borne out by Dosso et al. (2012). The extent of
undersampling is problem dependent, and it should not be a cause
for alarm if it is greater than shown here. This undersampling
merely illustrates that there is a trade-off between traversing greater
distances in the model space and fine sampling of the target areas.
Because parallel tempering allows for the trickling down of infor-
mation at higher temperatures to lower temperatures, the lower tem-
perature chains will have sampled the model space adequately.

Posterior on the number of interfaces

The marginal posterior distribution on the number of interfaces
for the target temperature T ¼ 1 is shown in Figure 5. The true num-
ber of interfaces is shown with a red vertical line. The dashed black
horizontal line corresponds to a uniform probability on the number

Figure 4. (a) Unweighted transdimensional posterior probability
distributions for resistivity at depth (left panel) and interface prob-
ability with depth (right panel). Each row corresponds to the indi-
cated temperature. The 5% and 95% quantile lines of resistivity at
depth are shown with dashed black lines, and the truth is shown
with a solid black line. (b) Samples at each temperature reweighted
to the target temperature T ¼ 1 to remove bias.
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of interfaces. The number of interfaces is a variable that changes
from model to model and models with different numbers of inter-
faces can be swapped between different chains. Because the true
number of interfaces is not known by the inversion a priori, the most
probable number of interfaces is not equal to the true value of four,
but turns out to be eight. This is not unusual, and a similar phenome-
non has also been observed by Minsley (2011).

Proposal variances at different temperatures

If the posterior probability space has various different length
scales associated with multiple modes, as long as equation 8 has
been obeyed, different proposal distribution step sizes can be as-
signed to each chain. For instance, we can assign larger proposal
variances to the higher temperature chains to ensure that they ex-
plore the model space with large steps. The step size for a chain at a
particular temperature should be made smaller if the acceptance
rates for that chain become very low (e.g., Bodin et al., 2012;
Ray and Key, 2012) or if the accepted swap rate between adjacent
chains falls far below 25%.

Convergence to the posterior

A definitive statement about convergence to the true posterior is
difficult to make, and it is still an area of active research, especially
with RJ-MCMC, in which the number of parameters may change in
the next step (Bodin and Sambridge, 2009). However, a method that
works well is to keep sampling until it is apparent that the posterior
distribution does not change appreciably by adding more samples
(Dettmer and Dosso, 2012). For the transdimensional case, with a
burn-in length of 5000 samples, we oversampled by 500,000 sam-
ples in each chain to test for convergence and stopped sampling at
1.75 million samples per chain.

Comparison between ordinary
and parallel-tempered MCMC

As is evident from Figure 3a and 3b, parallel tempering reveals
hidden modes in the fixed-dimensional case by transitioning be-
tween them with relative ease. Further, because this problem can

be mitigated by running numerous independent, noncommunicating
chains, it is only fair to compare parallel tempering with the case
when we run various independent MCMC chains. For the transdi-
mensional case, to obtain the level of detail and convergence found
in the last panel of Figure 4a, with parallel tempering we ran eight
chains with 1.75 million samples in each chain. In total, we used 14
million samples with a slightly lower number of total forward eval-
uations (as proposed samples falling outside the prior bounds are
not evaluated). For an equivalent level of detail without using par-
allel tempering, we needed at least 56 independent RJ-MCMC
chains with 500,000 samples each, a total of 28 million samples,
with a similar number of forward evaluations. Thus, we see that
parallel tempering requires less chains and a lower total number
of forward evaluations by a factor of two. To illustrate how much
better chain mixing is using parallel tempering, a comparison has
been made between sampled posteriors from parallel tempering and
independent chains, for eight chains and 500,000 samples in each
chain. Figure 6a shows the result from all eight independent chains,
and Figure 6b shows the results using parallel tempering, inference
made from only the target chain at T ¼ 1. Though neither ensemble
has achieved stationarity yet, an examination of the last panel of
Figure 4a (which uses the same color scale) shows that the result
with parallel tempering is closer to the final posterior distribution, as
is evident in the shape of the interface probability curves and the
smoothness of the 5% and 95% quantile lines of resistivity at depth.
In fact, it may even appear that the interface probability bumps in
the independent chain results are closer to the truth. This is not be-
cause they find the truth better than parallel tempering does, but
merely because they have not sampled enough of the model space
in an equivalent number of samples. Very similar behavior is re-
ported by Dosso et al. (2012).

Figure 5. Marginal probabilities on number of interfaces required
by the observed data at the target sampling temperature. The true
number four is marked with a vertical red line. The dashed black
horizontal line corresponds to a uniform probability on the number
of interfaces.

Figure 6. (a) Posterior from eight independent, noninteracting
chains, 500,000 samples in each chain. (b) Posterior from parallel
tempering with the same number of chains and samples, inference
using only the target chain. As evidenced by the smoother 5% and
95% quantile lines of resistivity at depth, parallel tempering esti-
mates are closer to the final sampled posterior.
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REDUCING UNCERTAINTY POSTINVERSION AND
SCENARIO EVALUATION

If one has used large enough prior bounds, a lot of information is
contained in PDFs pertaining to subsurface resistivity. In a typical
exploration scenario, as a prospect is being evaluated, more infor-

mation such as seismic data, well information, or even geologic
models becomes available over the course of time. One can then
incorporate this information when analyzing the posterior model
distribution without performing further inversion. When using in-
formation from geologic models, one is effectively examining dif-
ferent geologic scenarios embedded in the posterior. An example
application is shown in Figures 7 and 8. In step 1, we set up rea-
sonable uniform bounded prior distributions (Ray and Key, 2012)
for resistivity at depth (Figure 7, left panel), interfaces at depth
(Figure 7, right panel), and the number of layers required by a
model (Figure 8). In step 2, we introduce the data, and through
the data misfit translated into a likelihood, we sample the product
of likelihood and prior to obtain a posterior model distribution. Pos-
terior inference is made only from the chain at the target temper-
ature T ¼ 1. Step 2 produces the marginal posterior distribution for
the given prior bounds and data errors as shown in Figures 7 and 8.
Step 2 in these figures represent the same case as Figures 4a and 5
for the target temperature T ¼ 1. We could stop here, if this was all
we knew about the subsurface, and indeed we should if that is the
case. However, if new information from well logs or seismic imag-
ing confirms the presence of certain horizons in the subsurface, we
could mine the posterior model distribution using this information
and go to step 3. In this step, we have selected all models in the
posterior ensemble that have interfaces within �75 m of the true
location of interfaces, and the resulting posteriors from this subset
are shown in Figures 7 and 8. Note how the presence of a five-
layered structure is becoming quite apparent in Figure 7 step 3,
and the middle layer is more likely to be resistive. All rows of
Figure 7 are normalized to the same color scale. The last row shows
the step 3 posterior overlain with examples of sampled models sim-
ilar to both the true (black) as well as shadow (purple) family of
models, given that sampled models can have different numbers
of interfaces at different depths. The 5% and 95% quantile lines
have been omitted for clarity. Note the similarity of this last row
to Figure 3b for the fixed-dimensional case. The fixed-dimensional
case shown in Figure 3b is a highly specific case of Figure 7 step 3,
and MCMC samplers are not grid searches. However, that the fixed-
dimensional case, which is a subset of the full posterior, should be
so similar to the case shown in step 3 of Figure 7 is indeed
reassuring.

Figure 7. Workflow for inversion: (1) Start with broad uniform pri-
ors, (2) introduce the data and obtain full posterior model distribu-
tion, and (3) subset posterior using available knowledge of
interfaces. The last row shows the step 3 posterior overlain with
sampled models that are similar to the true model (in black) and
the shadow model (in purple).

Figure 8. Marginal posterior probability distributions on the num-
ber of interfaces for the cases described in Figure 7.
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This methodology can be encapsulated in the following manner:
(1) Start by setting reasonably wide bounded prior distributions, (2)
introduce the data to obtain the full posterior, and (3) subset the data
based on available information. Geologic models can also be tested
in this fashion. By subsetting parts of the model, we introduce a
conditioning on the posterior. This conditioning affects other parts
of the posterior model distribution. Depending on the available
knowledge about the subsurface, this method can be used to exam-
ine different geologic hypotheses. At this juncture, all sampled
likely models obey the model physics. Further, this step requires
no further inversion, but simply mining of the posterior distribution
(Ray and Key, 2012). We must caution though, that MCMC sam-
plers are not exhaustive grid searches, so sampling for too specific a
query may turn up no results, which does not imply that these spe-
cific cases do not exist. A corollary to postinversion conditioning on
the posterior is that we could use a more restrictive prior dis-
tribution to reduce the model space being searched. However, this
approach has a serious shortcoming in that one can “tune” the in-
version drastically by overspecifying the prior distribution, when
in reality our prior knowledge is limited. This can lead to serious
bias in the resulting posterior distribution, as is demonstrated by
Minsley (2011).

CONCLUSIONS

Uncertainty is an inescapable aspect of geophysical inversion.
Noisy observations, incomplete data sampling, insufficient knowl-
edge of a suitable subsurface parameterization as well as model
physics contribute to uncertainty and nonuniqueness in the inverted
models. In this work, we have attempted to fully address these is-
sues using a transdimensional Bayesian technique. To overcome
strong nonlinearities in the posterior model probability distributions
with multiple probability maxima, we have used parallel tempering
to reliably transition between different modes. We have also dem-
onstrated that parallel tempering speeds up convergence to the pos-
terior distribution by reducing the total number of required samples
to less than half of what would be required otherwise. We have at-
tempted to use as few parallel chains as possible with as few forward
calls per chain, to keep the total number of forward evaluations low.
With the advent of cluster computing, computation times for accu-
rate 2D and 3D model responses are rapidly getting smaller. How-
ever, the process of evaluating these model responses in themselves
use up significant cluster resources, and it is not yet feasible, for tens
of independent (noninteracting) Markov chains, to assign each Mar-
kov chain its own cluster for forward computations. This is where
parallel tempering drastically reduces the number of required chains
(eight for the RJ-MCMC), yet it keeps the number of forward eval-
uations per chain down to about 1.25 million for convergence.
Given a hypothetical 2D forward evaluation time of 1 s, 1.25 million
computations will take 14.5 days. Although this may seem like a
significant amount of time, investments for drill decisions are sig-
nificantly more expensive than this amount of computer time. With
advances in GPU computing and the availability of fast parallel
2.5D forward solvers, we have demonstrated that when the jump
to quick, higher dimensional forward modeling is made, parallel
tempering and transdimensional RJ-MCMC will be valuable tools
with which to evaluate the full uncertainty associated with ob-
served data.

ACKNOWLEDGMENTS

A. Ray would like to thank the modeling and inversion team at
Chevron Energy Technology Company (San Ramon) for their will-
ingness to discuss inverse problems in delightful detail. In particu-
lar, K. Nihei, J. Washbourne, and R. Modrak are thanked for their
comments during the course of the project that produced these re-
sults. J. Dettmer is thanked for providing valuable clues in the hunt
for a working parallel tempering algorithm, and T. Bodin is thanked
for providing insight into the workings of the transdimensional
method. A. Ray and K. Key would collectively like to thank the
Scripps Seafloor Electromagnetic Methods Consortium for funding
support. The authors collectively thank Chevron ETC for granting
permission to publish this work and two anonymous reviewers for
providing valuable comments that helped us express our ideas far
more clearly.

REFERENCES

Abubakar, A., T. M. Habashy, V. L. Druskin, L. Knizhnerman, and D. Alum-
baugh, 2008, 2.5D forward and inverse modeling for interpreting low-
frequency electromagnetic measurements: Geophysics, 73, no. 4,
F165–F177, doi: 10.1190/1.2937466.

Agostinetti, N. P., and A. Malinverno, 2010, Receiver function inversion
by transdimensional Monte Carlo sampling: Geophysical Journal
International, 181, 858–872, doi: 10.1111/j.1365-246X.2010.04530.x.

Backus, G. E., 1988, Bayesian inference in geomagnetism: Geophysical
Journal International, 92, 125–142, doi: 10.1111/j.1365-246X.1988
.tb01127.x.

Bayes, T., and R. Price, 1763, An essay towards solving a problem in the
doctrine of chances: By the late Rev. Mr. Bayes, F. R. S. Communicated
by Mr. Price, in a letter to John Canton, A. M. F. R. S.: Philosophical
Transactions, 53, 370–418, doi: 10.1098/rstl.1763.0053.

Bodin, T., and M. Sambridge, 2009, Seismic tomography with the reversible
jump algorithm: Geophysical Journal International, 178, 1411–1436, doi:
10.1111/j.1365-246X.2009.04226.x.

Bodin, T., M. Sambridge, H. Tkalčić, P. Arroucau, K. Gallagher, and N.
Rawlinson, 2012, Transdimensional inversion of receiver functions and
surface wave dispersion: Journal of Geophysical Research, 117,
B02301, doi: 10.1029/2011JB008560.

Brodie, R. C., and M. Sambridge, 2012, Transdimensional Monte Carlo in-
version of AEM data: Presented at 22nd International Geophysical
Conference and Exhibition.

Brooks, B. A., and L. Neil Frazer, 2005, Importance reweighting reduces
dependence on temperature in Gibbs samplers: An application to the co-
seismic geodetic inverse problem: Geophysical Journal International, 161,
12–20, doi: 10.1111/j.1365-246X.2005.02573.x.

Buland, A., and O. Kolbjornsen, 2012, Bayesian inversion of CSEM and
magnetotelluric data: Geophysics, 77, no. 1, E33–E42, doi: 10.1190/
geo2010-0298.1.

Chen, J., G. M. Hoversten, D. Vasco, Y. Rubin, and Z. Hou, 2007, A Baye-
sian model for gas saturation estimation using marine seismic AVA and
CSEM data: Geophysics, 72, no. 2, WA85–WA95, doi: 10.1190/1
.2435082.

Constable, S., 2010, Ten years of marine CSEM for hydrocarbon explora-
tion: Geophysics, 75, no. 5, 75A67–75A81, doi: 10.1190/1.3483451.

Constable, S. C., R. L. Parker, and C. G. Constable, 1987, Occam’s inver-
sion— A practical algorithm for generating smooth models from electro-
magnetic sounding data: Geophysics, 52, 289–300, doi: 10.1190/1
.1442303.

Dettmer, J., and S. E. Dosso, 2012, Trans-dimensional matched-field geo-
acoustic inversion with hierarchical error models and interacting Markov
chains: Journal of the Acoustical Society of America, 132, 2239–2250,
doi: 10.1121/1.4746016.

Dettmer, J., S. E. Dosso, and C. W. Holland, 2010, Trans-dimensional geo-
acoustic inversion: Journal of the Acoustical Society of America, 128,
3393–3405, doi: 10.1121/1.3500674.

Dosso, S. E., C. W. Holland, andM. Sambridge, 2012, Parallel tempering for
strongly nonlinear geoacoustic inversion: Journal of the Acoustical Soci-
ety of America, 132, 3030–3040, doi: 10.1121/1.4757639.

Earl, D. J., and M. W. Deem, 2005, Parallel tempering: Theory, applications,
and new perspectives: Physical Chemistry Chemical Physics, 7, 3910–
3916, doi: 10.1039/b509983h.

Ellingsrud, S., T. Eidesmo, S. Johansen, M. C. Sinha, L. M. MacGregor, and
S. Constable, 2002, Remote sensing of hydrocarbon layers by seabed

Accelerated Bayesian CSEM inversion E279

D
ow

nl
oa

de
d 

10
/1

7/
13

 to
 3

8.
99

.4
6.

17
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1190/1.2937466
http://dx.doi.org/10.1190/1.2937466
http://dx.doi.org/10.1190/1.2937466
http://dx.doi.org/10.1111/j.1365-246X.2010.04530.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04530.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04530.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04530.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04530.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04530.x
http://dx.doi.org/10.1111/j.1365-246X.1988.tb01127.x
http://dx.doi.org/10.1111/j.1365-246X.1988.tb01127.x
http://dx.doi.org/10.1111/j.1365-246X.1988.tb01127.x
http://dx.doi.org/10.1111/j.1365-246X.1988.tb01127.x
http://dx.doi.org/10.1111/j.1365-246X.1988.tb01127.x
http://dx.doi.org/10.1111/j.1365-246X.1988.tb01127.x
http://dx.doi.org/10.1098/rstl.1763.0053
http://dx.doi.org/10.1098/rstl.1763.0053
http://dx.doi.org/10.1098/rstl.1763.0053
http://dx.doi.org/10.1098/rstl.1763.0053
http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x
http://dx.doi.org/10.1029/2011JB008560
http://dx.doi.org/10.1029/2011JB008560
http://dx.doi.org/10.1111/j.1365-246X.2005.02573.x
http://dx.doi.org/10.1111/j.1365-246X.2005.02573.x
http://dx.doi.org/10.1111/j.1365-246X.2005.02573.x
http://dx.doi.org/10.1111/j.1365-246X.2005.02573.x
http://dx.doi.org/10.1111/j.1365-246X.2005.02573.x
http://dx.doi.org/10.1111/j.1365-246X.2005.02573.x
http://dx.doi.org/10.1190/geo2010-0298.1
http://dx.doi.org/10.1190/geo2010-0298.1
http://dx.doi.org/10.1190/geo2010-0298.1
http://dx.doi.org/10.1190/geo2010-0298.1
http://dx.doi.org/10.1190/1.2435082
http://dx.doi.org/10.1190/1.2435082
http://dx.doi.org/10.1190/1.2435082
http://dx.doi.org/10.1190/1.3483451
http://dx.doi.org/10.1190/1.3483451
http://dx.doi.org/10.1190/1.3483451
http://dx.doi.org/10.1190/1.1442303
http://dx.doi.org/10.1190/1.1442303
http://dx.doi.org/10.1190/1.1442303
http://dx.doi.org/10.1121/1.4746016
http://dx.doi.org/10.1121/1.4746016
http://dx.doi.org/10.1121/1.4746016
http://dx.doi.org/10.1121/1.3500674
http://dx.doi.org/10.1121/1.3500674
http://dx.doi.org/10.1121/1.3500674
http://dx.doi.org/10.1121/1.4757639
http://dx.doi.org/10.1121/1.4757639
http://dx.doi.org/10.1121/1.4757639
http://dx.doi.org/10.1039/b509983h
http://dx.doi.org/10.1039/b509983h


logging (SBL): Results from a cruise offshore Angola: The Leading Edge,
21, 972–982, doi: 10.1190/1.1518433.

Geyer, C. J., 1991, Markov chain Monte Carlo maximum likelihood: in E.
M. Keramidas, ed., Computing science and statistics: Proceedings of the
23rd Symposium on the Interface: Interface Foundation of North
America, 156–163.

Green, P. J., 1995, Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination: Biometrika, 82, 711–732, doi: 10
.1093/biomet/82.4.711.

Gunning, J., M. E. Glinsky, and J. Hedditch, 2010, Resolution and uncer-
tainty in 1D CSEM inversion: A Bayesian approach and open-source
implementation: Geophysics, 75, no. 6, F151–F171, doi: 10.1190/1
.3496902.

Hastings, W. K., 1970, Monte Carlo sampling methods using Markov chains
and their applications: Biometrika, 57, 97–109, doi: 10.1093/biomet/57.1
.97.

Key, K., 2009, 1D inversion of multicomponent, multifrequency marine
CSEM data: Methodology and synthetic studies for resolving thin resis-
tive layers: Geophysics, 74, no. 2, F9–F20, doi: 10.1190/1.3058434.

Key, K., and J. Ovall, 2011, A parallel goal-oriented adaptive finite element
method for 2.5-D electromagnetic modelling: Geophysical Journal
International, 186, 137–154, doi: 10.1111/j.1365-246X.2011.05025.x.

Liang, F., C. Liu, and R. J. Carroll, 2010, Bayesian inference and Markov
chain Monte Carlo: John Wiley & Sons, Ltd.

Loseth, L. O., H. M. Pedersen, B. Ursin, L. Amundsen, and S. Ellingsrud,
2006, Low-frequency electromagnetic fields in applied geophysics:
Waves or diffusion?: Geophysics, 71, no. 4, W29–W40, doi: 10.1190/
1.2208275.

MacKay, D. J. C., 2003, Information theory, inference and learning algo-
rithms: Cambridge University Press.

Malinverno, A., 2002, Parsimonious Bayesian Markov chain Monte Carlo
inversion in a nonlinear geophysical problem: Geophysical Journal
International, 151, 675–688, doi: 10.1046/j.1365-246X.2002.01847.x.

Minsley, B. J., 2011, A trans-dimensional Bayesian Markov chain Monte
Carlo algorithm for model assessment using frequency-domain electro-
magnetic data: Geophysical Journal International, 187, 252–272, doi:
10.1111/j.1365-246X.2011.05165.x.

Newman, G. A., and D. L. Alumbaugh, 2000, Three-dimensional magneto-
telluric inversion using non-linear conjugate gradients: Geophysical Jour-
nal International, 140, 410–424, doi: 10.1046/j.1365-246x.2000.00007.x.

Ray, A., and K. Key, 2012, Bayesian inversion of marine CSEM data with
a transdimensional self parametrizing algorithm: Geophysical Journal
International, 191, 1135–1151, doi: 10.1111/j.1365-246X.2012.05677.x.

Sambridge, M., T. Bodin, K. Gallagher, and H. Tkalcic, 2013, Transdimen-
sional inference in the geosciences: Philosophical Transactions of the
Royal Society A, 371, doi: 10.1098/rsta.2011.0547.

Sasaki, Y., 2013, 3D inversion of marine CSEM and MT data: An approach
to shallow-water problem: Geophysics, 78, no. 1, E59–E65, doi: 10.1190/
geo2012-0094.1.

Scales, J. A., and R. Sneider, 1997, To Bayes or not to Bayes?: Geophysics,
62, 1045–1046.

Swendsen, R. H., and J. S. Wang, 1987, Nonuniversal critical dynamics in
Monte Carlo simulations: Physical Review Letters, 58, 86–88, doi: 10
.1103/PhysRevLett.58.86.

Tarantola, A., and B. Valette, 1982, Inverse problems ¼ quest for informa-
tion: Journal of Geophysics, 50, 159–170.

Tompkins, M. J., J. L. Fernandez Martinez, D. L. Alumbaugh, and T. Mu-
kerji, 2011, Scalable uncertainty estimation for nonlinear inverse prob-
lems using parameter reduction, constraint mapping, and geometric
sampling: Marine controlled-source electromagnetic examples: Geophys-
ics, 76, no. 4, F263–F281, doi: 10.1190/1.3581355.

Trainor, W., and G. M. Hoversten, 2009, Practical challenges of stochastic
inversion implementation for geophysical problems: 79th Annual
International Meeting, SEG, Expanded Abstracts, 734–738.

Trainor-Guitton, W., and G. M. Hoversten, 2011, Stochastic inversion for
electromagnetic geophysics: Practical challenges and improving conver-
gence efficiency: Geophysics, 76, no. 6, F373–F386, doi: 10.1190/
geo2010-0223.1.

Weiss, C., 2007, The fallacy of the “shallow-water problem” in marine
CSEM exploration: Geophysics, 72, no. 6, A93–A97, doi: 10.1190/1
.2786868.

Young, P. D., and C. S. Cox, 1981, Electromagnetic active source sounding
near the East Pacific Rise: Geophysical Research Letters, 8, 1043–1046,
doi: 10.1029/GL008i010p01043.

E280 Ray et al.

D
ow

nl
oa

de
d 

10
/1

7/
13

 to
 3

8.
99

.4
6.

17
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1190/1.1518433
http://dx.doi.org/10.1190/1.1518433
http://dx.doi.org/10.1190/1.1518433
http://dx.doi.org/10.1093/biomet/82.4.711
http://dx.doi.org/10.1093/biomet/82.4.711
http://dx.doi.org/10.1093/biomet/82.4.711
http://dx.doi.org/10.1093/biomet/82.4.711
http://dx.doi.org/10.1190/1.3496902
http://dx.doi.org/10.1190/1.3496902
http://dx.doi.org/10.1190/1.3496902
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1190/1.3058434
http://dx.doi.org/10.1190/1.3058434
http://dx.doi.org/10.1190/1.3058434
http://dx.doi.org/10.1111/j.1365-246X.2011.05025.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05025.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05025.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05025.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05025.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05025.x
http://dx.doi.org/10.1190/1.2208275
http://dx.doi.org/10.1190/1.2208275
http://dx.doi.org/10.1190/1.2208275
http://dx.doi.org/10.1190/1.2208275
http://dx.doi.org/10.1046/j.1365-246X.2002.01847.x
http://dx.doi.org/10.1046/j.1365-246X.2002.01847.x
http://dx.doi.org/10.1046/j.1365-246X.2002.01847.x
http://dx.doi.org/10.1046/j.1365-246X.2002.01847.x
http://dx.doi.org/10.1046/j.1365-246X.2002.01847.x
http://dx.doi.org/10.1046/j.1365-246X.2002.01847.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05165.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05165.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05165.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05165.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05165.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05165.x
http://dx.doi.org/10.1046/j.1365-246x.2000.00007.x
http://dx.doi.org/10.1046/j.1365-246x.2000.00007.x
http://dx.doi.org/10.1046/j.1365-246x.2000.00007.x
http://dx.doi.org/10.1046/j.1365-246x.2000.00007.x
http://dx.doi.org/10.1046/j.1365-246x.2000.00007.x
http://dx.doi.org/10.1046/j.1365-246x.2000.00007.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05677.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05677.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05677.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05677.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05677.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05677.x
http://dx.doi.org/10.1098/rsta.2011.0547
http://dx.doi.org/10.1098/rsta.2011.0547
http://dx.doi.org/10.1098/rsta.2011.0547
http://dx.doi.org/10.1098/rsta.2011.0547
http://dx.doi.org/10.1190/geo2012-0094.1
http://dx.doi.org/10.1190/geo2012-0094.1
http://dx.doi.org/10.1190/geo2012-0094.1
http://dx.doi.org/10.1190/geo2012-0094.1
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1190/1.3581355
http://dx.doi.org/10.1190/1.3581355
http://dx.doi.org/10.1190/1.3581355
http://dx.doi.org/10.1190/geo2010-0223.1
http://dx.doi.org/10.1190/geo2010-0223.1
http://dx.doi.org/10.1190/geo2010-0223.1
http://dx.doi.org/10.1190/geo2010-0223.1
http://dx.doi.org/10.1190/1.2786868
http://dx.doi.org/10.1190/1.2786868
http://dx.doi.org/10.1190/1.2786868
http://dx.doi.org/10.1029/GL008i010p01043
http://dx.doi.org/10.1029/GL008i010p01043

